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Abstract: The thioredoxin system—formed by thioredoxin reductase and its characteristic substrate

thioredoxin—is an important constituent of the intracellular redox milieu. Interactions with many

different metabolic pathways such as DNA-synthesis, selenium metabolism, and the antioxidative

network as well as significant species differences render this system an attractive target for chemo-

therapeutic approaches in many fields of medicine—ranging from infectious diseases to cancer

therapy. In this review we will present and evaluate the preclinical and clinical results available

today. Current trends in drug development are emphasized. � 2003 Wiley Periodicals, Inc. Med Res

Rev, 24, No. 1, 40–89, 2004
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1 . I N T R O D U C T I O N

The cellular redox-milieu—with its metabolic, antioxidative, and regulatory aspects—is largely

maintained and regulated by two enzyme-based systems: the glutathione and the thioredoxin

system.1–4 In each system, an NADPH-dependent flavoenzyme—namely glutathione reductase (GR;

EC 1.8.1.7a) and thioredoxin reductase (TrxR; EC 1.8.1.9b)—is involved. Both enzymes belong to a

family of homodimeric pyridine nucleotide-disulfide oxidoreductases which further includes

enzymes like lipoamide dehydrogenase, trypanothione reductase, and mercuric ion reductase.5

The classical thioredoxin system is formed by thioredoxin reductase and its characteristic

substrate the redox active protein thioredoxin (Trx), whose reduction at the expense of NADPH is the

naming reaction. Reduced thioredoxin in turn is reoxidized whilst providing reducing equivalents to

target molecules (Fig. 1).

aGlutathione reductase was formerly designated 1.6.4.2; see: Nomenclature Committee of the International Union of

Biochemistry and Molecular Biology (NC IUBMB) (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/cont1bb.html).
bThioredoxin reductase was formerly designated 1.6.4.5.
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Even though discovered in the nineteen sixties,6,7 more than 50% of almost 2,700

thioredoxin-related entries found in the Medline databasec today were published within the last

5 years. As most of the earlier studies were focused on the bacterial systems, where the cellular

functions of these two proteins appear to be rather limited, the multitude of functions in

mammalian cells had been largely ignored for many years. In 1996, thioredoxin research got a

further boost when Stadtman’s group discovered that mammalian TrxRs are selenoenzymes.8,9

The number of published observations has dramatically increased ever since, but many findings

still lack supporting experimental evidence regarding their physiological significance. However,

available preclinical in vitro data and clinical data strongly support the notion that the thioredoxin

system is of importance and that the development of drugs acting via the thioredoxin system is a

promising route.

It is impossible to cover all aspects of the topic. In this article, we will briefly review the

biochemical properties of the proteins involved with a special focus on their known intra- and extra-

cellular functions and then discuss potential medical applications and aspects of drug development.

Available associated clinical and preclinical data will be discussed and critically reviewed. Our list

of references might serve as a basis for a more detailed view on certain aspects. In particular, we

recommend the reviews given in Refs. 4, 10–17.

A problem occurring in all rapidly growing scientific fields, is the use of a non-homogeneous

nomenclature as simultaneous discoveries lead to different names and terms for, in fact, identical

things and processes. The thioredoxin field is unfortunately no exception to this rule. We have

therefore used a more systematic nomenclature for different thioredoxins and thioredoxin reductases

refered to in this article. It is based on the species name, the enzyme refered to (TrxR or Trx) and a

numerical identifier. To facilitate species comparison, we used the human system as a standard. The

human enzymes were ordered in the chronological order of their discovery (e.g., the human placental

TrxR was discovered first, thus hTrxR-1) and the corresponding enzymes were assigned according to

the human enzyme they resemble closest. Examples are shown in Table III, which may also serve as a

reference to the terms used elsewhere.

Figure 1. Thethioredoxinsystem.ThetermclassicalreferredtothefunctionalunitofTrxR,TrxandNADPH.Asaresultofthe increasing

number of substrates that can be directly reduced by (mainly large) TrxRs, the meaning of this term has widened too. Even

though being the major source of NADPH in the cytosol of most tissues, other sources than the pentose phosphate pathway

(e.g.,NADP
þ
-specific isocitrate dehydrogenase)mayprovide reducingequivalents, too�particularly inother subcellularcompart-

ments suchas themitochondria.
342

chttp://www.ncbi.nlm.nih.gov/entrez/
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2 . C L A S S I F I C A T I O N O F T H I O R E D O X I N R E D U C T A S E S

As the functions and biochemical features of the thioredoxin system in different species are quite

diverse it seemed warranted to us to provide some basic guidelines first.

Thioredoxin reductase was first studied in Escherichia coli.18–25 Soon it became clear, that the

bacterial TrxR differs in many aspects from other members of the greater enzyme family. The most

obvious difference is subunit size. Whereas the average subunit mass of glutathione reductases and

lipoamide dehydrogenases (irrespective of the source) is around 55 kDa, the bacterial TrxRs exhibit

an average molecular mass of 35 kDa per subunit.5 In subsequent studies, it became evident that the

catalytic cycle which even involves a domain rotation of 66� is distinct from all other members of

the family.17,26,27 Although certain common building units such as the NADPH and FAD binding sites

are present in bacterial TrxR (Fig. 2), the sequence identities (Table I) and similarities are detectably

low and it was not surprising that the 3-dimensional structure ofE. coliTrxR differs significantly from

related flavoenzymes.28

When the first mammalian TrxRs were purified, they turned out to be more typical members of

the familiy. Subunit mass29,30 and domain arrangement31 as well as the mechanism of the reductive

half reaction resemble that of glutathione reductase and lipoamide dehydrogenase.32 Furthermore,

unlike the small TrxRs whose substrate spectrum is very narrow, the large TrxRs exhibit a broad

substrate spectrum that includes many different molecules apart from thioredoxin (e.g., Refs. 33–

39)—a finding we will discuss later in more detail. Despite these striking differences, studies continue

to be conducted or referred to usingE. coli TrxR data for the interpretation of the mammalian system.

It is clear that such data are highly susceptible to misinterpretations.

Initial classification attempts suggested the terms ‘‘bacterial TrxR’’ and ‘‘mammalian TrxR.’’

However, TrxRs of the bacterial type are not present in the bacteria only but can also be found in

plants,40,41 fungi,42,43 and some protozoa (as indicated by the presence of protein sequences. For

example, Pneumocystis carinii; NCBI-accession no. AAN12366). Thus, the now more commonly

used terms (Table II) are small TrxRs (subunit size approx. 35 kDa) and large TrxRs (subunit size

approx. 55 kDa; CVNVGC as typical N-terminal active site sequence).

Until very recently it was believed that they are mutually exclusive, as it appeared that no

organism harbored both classes of TrxR.44 Novoselov et al., however, showed that there are indeed

species—at least Chlamydomonas reinhardtii—which keep in possession both types of TrxRs.45,46

Unlike earlier assumption, they suggest that it was an early eukaryote that possessed both classes of

TrxR and that during the subsequent evolutionary steps either the small or the large TrxR was dropped

in a phylogenetic branch.45,46

Whereas the class of small TrxRs is rather homogeneous, significant differences can be

found among the large TrxRs. As a common structural feature, the large TrxRs have an additional

C-terminal redox center that accepts reducing equivalents from the flavin-near cysteines and transfers

them to the final substrate—yet the individual ‘‘styling’’ of this second redox center differs sub-

stantially (Fig. 3).

Figure 2. Domainorganizationof largeandsmall TrxRs compared to glutathione reductase. Adapted fromRef. 39.
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A first surprise was the discovery that mammalian TrxRs are selenoenzymes.8,47,48 Selenium is

specifically integrated via selenocysteine (Sec) as the penultimate amino acid. It is part of the

catalytically essential redox active sequence GCUG (where U represents Sec; see Figs. 2 and 3).9 This

finding explained the previously unsuccessful attempts to express the active enzyme recombinantly in

full lengthd.31

Since disulfide bonds between sequentially adjacent cysteines are normally strained (see Refs.

50, 51 and references therein), it is assumed that the selenocysteine—due to its approx. 15% longer

bond52—is much more suitable. This view is supported by mutants in which Sec was replaced by Cys:

These enzymes exhibit a dramatic loss in activity when compared to the wild-type enzyme (reported

were approx. 1–11% residual activity. See Refs. 53, 54, 351). The large TrxR of Plasmodium

falciparum—the causative agent of tropical malaria55—does not contain selenium although it shows,

depending on the substrate, 25–93% of the specific activity of the human enzyme.56–59 In this

enzyme, the problem has been solved differently: instead of the Cys–Sec-motif an insertion of four

amino acids between the two C-terminal redox active cysteines is used (Cys–GGGK–Cys). This

allows to form a tension-free intramolecular disulfide bridge at the C-terminal active site without the

need for selenium. The increased rotational flexibility caused by the ‘‘glycine-spacer’’ does, however,

reduce catalytic efficacy, when compared to the human enzyme. These information in mind, the

characterization of Drosophila melanogaster TrxR offered a surprise: this large, selenium-free TrxR

possesses a Cys–Cys-motif at its C-terminal tail that—in contradiction to the initial theory—shows

(depending on the substrate) approx. 50% activity of native human cytosolic TrxR-1.60 The major

differences between the two enzymes are the neighboring amino acids (Fig. 3): the flanking neutral

glycines of the (known) mammalian TrxRs are replaced by polar serines—a peculiarity that is not

limited to Drosophila but is apparently a common feature among the dipterae (Fig. 3; Ref. 352).

Mutational studies show that it is the hydroxyl-groups of the serines which are responsible for the

activity enhancement.351

Table I. Sequence Identities Among Disulfide Reductases

Wheninterpretingthesedataitmustbetakenintoaccount, thatcertainfunctionalbuildingblocks(NADPH-bindingsite,FAD-binding

site) showahighdegreeofsequence identity.Thedatashow thecloser relationshipbetweenGRsandlargeTrxRsincomparisonto

small TrxRs.FigureswerecalculatedusingLFASTA(usinghttp://www.infobiogen.fr/services/analyseq/cgi-bin/lfastap _ in.pl) based

onRef.335.

dIn Ref. 31, the authors also stated that the truncated protein lacking selenocysteine was unable to bind FAD. This,

however, was not reproducible (Arnér and Holmgren, personal communication and own observations). In fact, the stable

FAD-binding of the truncated enzyme species imposes a problem for the spectral analysis of the recently invented technology

to express these selenoenzymes in heterologous systems.49

eDiptera: Insect order containing flies (e.g., gnats, mosquitoes, true flies). They are characterized by a single pair of

membranous wings, a pair of halters (instead of the hind wings), sucking mouthparts, and a complete metamorphosis.

THE THIOREDOXIN SYSTEM�FROM SCIENCE TO CLINIC * 43



So far there is no generally accepted subclassification of large TrxRs, thus, we suggest to

use the essential C-terminal sequence for clarification if needed (e.g., DmTrxR-SCCS in the case

of Drosophila melanogaster, hTrxR-GCUG for the human or PfTrxR-GCG3KCG for the plasmodial

enzyme).

3 . C L A S S I F I C A T I O N S O F T H I O R E D O X I N S

A thioredoxin is defined as a protein of approx. 12 kDa that contains the active site sequence

(W)CGPC(K)f, also referred to as the ‘‘thioredoxin-motif.’’ These active site cysteines form a

disulfide which is reduced by the homologous TrxR (Figs. 1, 4, and 5). The reduced protein is

classically capable of transferring the reducing equivalents to ribonucleotide reductase.6,61 However,

the functions of reduced thioredoxins are by far not limited to this reaction (Fig. 1), and in fact,

different thioredoxins within one organism can serve different functions.62,63

The typical thioredoxin structure (Fig. 4A) consist out of five central b-strands, forming a twisted

plane of b-sheets, surrounded by four a-helices.64 The high degree of secondary structures may

explain the high stability65 of the protein towards, e.g., heat, even though exceptions do exit.66–68 One

Table II. Features of Small and Large TrxRs

DarkgreyshadedlinesindicatedefiningpropertiesofallTrxRs.ThefeaturesusedtodistinguishlargeandsmallTrxRsareshowninlight

grey.Therearefurtherdifferencesbetweenlargeandsmall TrxRswhichare, however, notoftenused todifferentiatebetweenthetwo

groups.Onlyonesmall TrxR known, namely thatof theparasiteGiardia duodenalis, is reported tobe capable of reducingDTNB

directlyandthereforedoesn’t fitcompletely intothisclassificationscheme.
336

fTryptophane (W) and lysine (K) are not generally accepted as being required for the thioredoxin motif. Occasionally

even (G)lycine and (P)roline are questioned. However, we feel that—due to the already very broadly used term "thioredoxin,

the core sequence CGPC should be considered a conditio sine qua non.
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of the two catalytically redox active cysteine residues (Cys32 and Cys35 in human Trx-1) is burried

(Cys35), whereas the other is more solvent exposed (Cys32; Fig. 4B).g

The characteristics of thioredoxins are more conserved than those of the TrxRs, but there are

differences. Some mammalian thioredoxins contain additional cysteines which are implicated in

thioredoxin-dimer formation and other regulatory processes (e.g., Cys73 in human Trx, Fig. 4).69,70

However, there are thioredoxins in mammals—mitochondrial hTrx-2—that resemble closely

bacterial thioredoxins and lack these additional cysteines.71 The fact that mitochondrial hTrx-2 is

more closely related to the bacterial Trx than to the cytosolic isoform hTrx-1 is also of interest in the

light of the endosymbiont hypothesis.

Human thioredoxin was identified as the active principle in very diverse functions and given

different names since it was initially unknown that the new molecules are identical with

thioredoxin.72–74 Designations, such as ‘‘adult T-cell leukemia derived factor (¼ADF),’’75 ‘‘early

pregnancy factor (¼EPF),’’74 or ‘‘interleukin-2 (IL-2) receptor-inducing factor’’76 should no longer

be used for thioredoxin, yet they still remind us of some of the functions thioredoxin does exhibit in

biological systems.

Interestingly, Trx-177 as well as Trx-2 gene78 disruption experiments in mice resulted in em-

bryonic lethality in homozygous animals, which indicates the importance of the thioredoxin system.

Apart from ‘‘normal’’ thioredoxins, truncated forms apparently play a significant biological role

as well.79 We will discuss this issue in a later section.

gAs we believe that a more perceptible model may be beneficial for the understanding we recommend to envisage the

thioredoxin structure as hamburger (Fig. 4B): one may regard the 5 b-sheets as the patty of ground beef covered by the roll

formed by the 4 a-helices. The catalytically redox active residues—Cys32 and Cys35 in hTrx-1—would correspond to the

tomato slice—partially visible, partially buried.

Figure 3. C-terminalsectionsofdifferent largeTrxRsaswellassomecloselyrelatedenzymes.Humanglutathionereductase (hGR) is
shownto indicatethat thetypicalC-terminal tailof largeTrxRsmayberegardedasanextentiontoGR.Thioredoxinglutathionereduc-

tase (TGR)�initiallyattributed tothe‘‘pure’’TrxRs�isanenzymatic chimeraas ithasTrxRandGRactivity withinone enzymeprotein.

Mercuric ion reductase (HgR) exhibits a C-terminal redox active site similar to that of largeTrxRs, yet, the substrate spectra are very

different:HgR’s subtrate,Hg
2þ

-ions, inactivateTrxRs. Inversely, thioredoxin is not reducedbyHgR.
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Moreover, there is a growing number of proteins that show sequence and structural similarity

with thioredoxins (one of the most common protein domain folds)—in fact some even contain a redox

active thioredoxin domain as part of the structure such as the recently discovered sperm cell specific

proteins hSptrx-1.80,81 In most cases, however, the redox active site is different, e.g., CGHC in protein

disulfide isomerase (PDI), and calcium binding proteins 1 and 2 (CaBP1, CaBP2).35,82 Many of these

proteins can also be reduced by large TrxRs, yet they lack other defining features of a Trx—especially

Figure 4. Structure of oxidized hTrx-1. A: Ribbon model (B) Space filling model. a-Helical structures are shown in red, b-sheets in
yellow.The active site cysteines 32 (blue) and 35 (green) as well as the putative regulatory cysteine 73 (lightgray) are indicated.The

respective sulfur atoms are highlighted in dark orange.The protein is shown from three different perspectives: first (a) a view ‘‘from
the side,’’ (b) rotated 90� clockwise (‘‘front view’’) compared to (a), and (c) anadditional rotationby 90� downward (‘‘top view’’).
The figurewas createdusing RasMol V 2.7.2.1 (writtenby R.SayleandH.Bernstein) and the PDB-dataset1AUC.

343

Figure 5. Alignmentof different thioredoxins (using Clustal W version1.82).The thioredoxin-motif (W)CGPC(K), typical forall thiore-

doxins is shown in bold. Additional cysteine residues have also been highlighted. NCBI-Accession numbers: hTrx-1:JH0568; mito-

chondrial hTrx-2:AAN05576.1
280

; DmTrx-1: P47938; DmTrx-2: AAF52794.1
63
; EcTrx-1: P00274. In the case of hTrx-2, the assumed

mitochondrial importingsequence (residues1^58) hasbeenomitted.
280
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they do not provide reducing equivalents for ribonucleotide reductase. The casual use of the terms

‘‘thioredoxin,’’ ‘‘thioredoxin domain,’’ ‘‘thioredoxin-motif,’’ and particularly ‘‘thioredoxin-like

motif’’ for proteins that lack the classical core CGPC sequence83–85 and occasionally even Trx-

typical redox-activity83,85 is problematic.

Thus, only if a physiological in vivo interactions between the classical constituents of the

thioredoxin system and those proteins are possible, these designations should be used and interactions

taken into account when interpreting related data.

4 . B I O L O G I C A L R O L E S O F T H E T H I O R E D O X I N S Y S T E M

The functions and actions of thioredoxin reductase and thioredoxin are impressive and it is virtually

impossible to cover all aspects in a single paper. We would thus like to recommend also other reviews

to the reader (e.g., Refs. 4, 10–13, 39, 86, 87).

A. Antioxidative Network

Cells must maintain a reducing intracellular milieu. The evolutionary emergence of molecular

oxygen (O2) imposed a serious threat to this essential condition. Even though many ‘‘modern’’ cells

take advantage of the presence of oxygen, e.g., for energy production via oxidative phosphorylation,

some chemical features of dioxygen remain a severe peril to cell integrity: normal (triplet-)oxygen

(3O2) by itself is a weak, yet due to its abundance, a significant, paramagnetic diradical with two

unpaired electrons. In activated states or as a result of unwanted side reactions, more reactive

oxygens species (¼ROS) such as superoxide (O2
�), hydrogen peroxide (H2O2), singlet oxygen

(1O2), ozone (O3) as well as the hydroxyl radical (
*

OH) emerge which can damage cellular

constituents by oxidation.88 Especially unsaturated carbon bonds in membrane lipids and cellular

thiols are prone to such events generally leading to loss of function. Cells have developed enzymatic

and non-enzymatic systems to reduce the concentration of these and other ROS.89 Superoxide for

instance is dealt with by superoxide dismutases that convert superoxide to hydrogen peroxide, which

in turn is detoxified mainly by catalase90 but also by glutathione and thioredoxin dependent

peroxidases.91,92 Even though these systems can handle huge amounts of reactive oxygen species,

they are not perfect. Some reactive molecules will escape and damage potential targets which are

chosen at random—any susceptible structure will do. Like in real life, cells recruit ‘‘bodyguards’’

and ‘‘rescue specialists’’ in case the ‘‘bodyguards’’ fail to protect jeopardized ‘‘VIP-structures’’

from oxidative stress: the major one of them is reduced glutathione (GSH) which is present in

millimolar concentrations in most cells.1 Due to its high concentration, it is much more likely that

reactive molecules will react with the thiols of GSH than with the less concentrated thiols that have to

be protected.1 Thus GSH is sacrificed on their behalf. If, however, protein thiols should have been

damaged, GSH is capable in many cases to repair this injury as well. To maintain continuous

functionality, oxidized glutathione (glutathione disulfide, GSSG) is enzymatically reduced to GSH,

mainly by the flavoenzyme glutathione reductase.1 Apart from GSH, many other (however, normally

less concentrated) low molecular weight compounds (e.g., ascorbic acid, vitamin E, ubiquinol, uric

acid) provide similar protection. Often ignored as a major constituent of the cellular redox buffer are

non-essential protein cysteines, which—when taken together—also provide thiols in the millimolar

range.1 When oxidized to sulfenates or disulfides they are mainly reactivated by GSH often in

collaboration with glutaredoxin or by the other key player in the antioxidant game: reduced

thioredoxin.

Oxidized glutathione is reduced rapidly in most cells by glutathione reductase which keeps up a

molar ratio of around 1:600 for c(GSSG): 2 � c(GSH). Even though discovered quite early, the

reduction of GSSG by reduced thioredoxin was considered to be negligible.38,93,94 Thus it was even
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more surprising that Drosophila melanogaster, one of the model organisms for in vivo studies,

employs glutathione but lacks a typical glutathione reductase. It turned out that it was the thioredoxin

system—previously considered to be negligible38,93,94—that kept glutathione in its reduced state in

this insect.58,60 Knock-out mutants of TrxR in Drosophila were found to be lethal.95,96 First assumed

to be a peculiarity of this particular organism it now appears that the lack of a genuine GR is a common

feature among the diptera if not among insects (Refs. 60, 352). This is interesting since Drosophila

and related organisms are readily exposed to oxidative stress: first of all, they need an efficient

oxidative metabolism for providing sufficient energy to fly (which inevitably results in more side-

reaction ROS1) and furthermore they expose their translucent wings to sunlight which adds ROS due

to photo-oxidation. Apart from diptera, an increasing number of other organisms are now reported to

lack a genuine GR—one of them is the human pathogen Helicobacter pylori.97 To avoid

misinterpretations, however, it must be added, that there are also organisms such as trypanosomes that

apparently lack a genuine TrxR—even though thioredoxin is present.98

Apart from the Trx-driven GSSG reduction, other alternative pathways for the glutathione

reductase independent reduction of oxidized glutathione have been suggested: for instance via the

related glutaredoxinh and (predominantly enzyme-bound) dihydrolipoamide99 or via TrxR and

methylselenol.100 However, a physiological in vivo role of these pathways is not yet established. If of

relevance, the glutaredoxin-dihydrolipoamide pathway is presumably limited to the mitochondria,

as the concentration of dihydrolipoamide is highest in this compartment, which also contains

glutaredoxin.101

Like glutaredoxin and glutathione, the thioredoxin system is capable of regenerating proteins

inactivated by oxidative stress.102 In fact, the data presented indicate that the thioredoxin system may

contribute more than 50% to this function.102

Thus the thioredoxin and the glutathione system, formerly considered to be clearly separated,

turn out to constitute a balanced redox network in which functionality can be shared between the

constituents to some extent. This view was emphasized by Burk et al. who reported liver and

kidney necrosis when rats were depleted of glutathione under conditions of selenium deficiency,

whereas selenium-sufficient control animals showed no necrosis.103 A recently discovered human

selenoenzyme—initially assumed to be a typical thioredoxin reductase (‘‘hTR2’’)104—is

thioredoxin glutathione reductase (TGR).105 In mammals it is testis-specific105 whereas its

distribution in other organisms is broader.106 TGR may be regarded as a molecular chimera since

it combines genuine (large) thioredoxin- and glutathione reductase activity in a single poly-

peptide chain.

Mammalian TrxRs as well as thioredoxin can recycle dehydroascorbate to ascorbate.107 The

data indicate an important role for the thioredoxin system dehydroascorbate reduction at least in

liver, even though the glutathione system seems to contribute more to this function.108,109 In a

subsequent study, a TrxR-dependent ascorbate cycle was postulated for erythrocytes.110,111 However,

as pointed out later, we consider the TrxR-content (but not the Trx-content!) in human erythrocytes

to be negligible.

Another finding is the in vitro reduction of ubiquinone to ubiquinol by mammalian TrxR, which

is dependent on the presence of the selenocysteine.112 However, this reduction is extremely

slow (approx. 0.011 ubiquinone molecules per hTrxR-1 subunits and second), allowing the

otherwise kinetically unfavorable reduction of hTrxR-1 by NADH.113 Even though the provided

cell culture data indicates that this activity may play a significant role in vivo,112 an unambiguously

direct in vivo link is missing. From the data provided,112 it can be calculated that under selenite

substitution the cellular ubiquinol formation is up to almost fourfold faster than in vitro, sug-

gesting the formation of an intermediate such as methylselenol or another low molecular weight

selenium compounds which links TrxR activity and ubiquinone reduction in vivo. A more selective

hGlutaredoxin (Grx) is also known as thioltransferase.
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inhibitor of TrxR than Zn2þ used in the cited study might provide further insight into the in vivo

situation.

B. Redox Regulation

Cellular functions need to be tightly controlled. A well-known and important control system

is interconversion by reversible phosphorylation and dephosphorylation of target structures.i

Another important regulatory principle is redox regulation.114 The fact that cysteines in the active site

of enzymes and proteins are normally essential for activity renders them ideal candidates for

reversible modifications that allow a tight regulation of its action. A well-known example is the

bacterial thioredoxin which in its reduced state serves as a subunit of the viral T7-polymerase,

whereas the thioredoxin disulfide (despite only subtle differences in the crystal structure) does

not.115,116

The concept of redox regulation requires that—despite the generally reducing cytosolic

environment—oxidized species can also exist. Studies by C. Gitler and coworkers showed that under

normal conditions approx. 11% of the cellular thioredoxin is present in the oxidized state.117 As

oxidation is most often due to an increased flux of (mainly exogenous) ROS, it seems natural that

redox regulation acts primarily as a response mechanism to this oxidative stress.118,119

Examples of such redox-regulated processes are the activation or deactivation of enzymes

(see e.g., Ref. 120) and several transcription factors (see Ref. 121 for a review). Many of these factors

have either been shown or are assumed to be redox-regulated by thioredoxin.119,122–138

Interestingly, hTrxR-1 expression itself appears to be linked to the cellular redox-milieu.139 The

core promoter exhibits the typical features of a housekeeping gene, yet due to the abundance of

AU-rich elements, hTrxR-1-mRNA-levels can be post-transcriptionally regulated. This regulation

process is apparently redox-sensitive.

NF-kB is a frequently studied example of thioredoxin redox regulation. NF-kB, discovered in

1986, is a ubiquitous family of inducible transcription factors. It is beyond the limits of this review to

explain this complex and yet not fully understood system, but we feel that a few aspects need to be

pointed out. For more detailed reviews on NF-kB, see Refs. 140–142. NF-kB, which is activated by a

large variety of stimuli, mainly as the result of inflammatory cytokines, infections, carcinogens, ROS,

cellular stresses, and apoptosis inducers, controls approx. 180 genes. The gene products are diverse,

yet many have antiapoptotic effects or are otherwise ‘‘beneficial’’ for uncontrolled cell growth. Lack

of NF-kB leads to immune defects. In humans five different subunits of the NF-kB complex are known

today: NF-kB1 (p50), NF-kB2 (p52), RelA (p65), RelB, and c-Rel. The main form of ‘‘NF-kB’’ is

made up by heterodimerization of RelA and NF-kB1 (p50). Their translocation into the nucleus and

thus their activity as a transcriptional factor is, however, inhibited by IkBa. At least NF-kB1 (p50)

requires a specific cysteine residue (Cys62) in the reduced form for efficient DNA-binding and thus

for activity. Cys62-reduction is performed by thioredoxin.143,144 To make things more complicated,

thioredoxin seems to act differently in the cytosol and in the nucleus, as it can also inhibit TNF-a-

induced or IL-1-induced NF-kB activation by interacting with the signaling cascade required to

remove the inhibiting factor IkBa, preventing the nuclear translocation and DNA-binding of the active

NF-kB complex.136,142,145

The activated form of the tumor suppressor p53 can lead to apoptosis.146,147 The thioredoxin

system has been implicated in the activation of p53 by enhancing its DNA-binding

capability.125,134,148–151 However, the p53–thioredoxin interaction data are yet not fully consistent.

Interestingly, activated p53 repressed TrxR transcription and expression as reported recently by

Gladyshev and coworkers.152 Taking further into account that a functional mitochondrial thioredoxin

iThe human genome encodes presumably more than 600 kinases and approx. 30% of all proteins are phosphorylated.

M. Wiese, personal communication.
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system prevents cells from undergoing apoptosis,153–155 it is likely that the high Trx and TrxR

contents in tumor cells indeed prevent apoptosis.

Ca2þ -ions exhibit a dose dependent inhibitory effect on hTrxR activity in the physiological

cytosolic concentration range (Refs. 156, 157 and Gromer S., unpublished observation), whereas

Mg2þ does not (Gromer S., unpublished observation). Supporting evidence for a physiological

relevance of these Ca2þ -effects comes from Gitler’s group117 who reported a parallel increase in the

concentrations of oxidized cellular thioredoxin and calcium.

In the initial reports it was stated that this inhibition by Ca2þ was not reversible by calcium

chelators such as EGTA—a finding hardly compatible with a regulatory function. It was not

reproducible in our hands.

An EF-hand (the name derives from parvalbumin, where calcium-binding takes place in a loop

with many negative charges between two a-helices named E and F) has been reported to be present in

E. coli and human TrxR by Schallreuter et al.158 This is, however, not the case (Fig. 6): the sequence

alignment did not only use the E. coli (small) TrxR as search model but also identified an ‘‘EF-hand’’

with only two negatively charged residues. Several negatively charged residues are, however,

essential for binding Ca2þ in the EF-hand loop (Fig. 6). When looking at the crystal structure of

reduced and oxidized E. coli TrxR as well as mammalian TrxR, no EF-hand can be found, nor any

other related motif that could easily explain the observed phenomenon.

C. The Synthesis of Deoxyribonucleotides

All cells that multiply must prepare an identical copy of their DNA—a task that requires the presence

of deoxyribonucleotides. The deoxyribonucleotides are formed from ribonucleotides by reducing

the hydroxyl group at the C2 0 of the ribose-moiety. This reaction is performed by ribonucleotide

reductase and requires reducing equivalents which can normally be provided by either glutaredoxins

(Grx) or thioredoxins:34

NDP þ Grx�ðSHÞ2 ! dNDP þ H2O þ Grx�S2

or

NDP þ Trx�ðSHÞ2 ! dNDP þ H2O þ Trx � S2

It is this reaction which led to the discovery of thioredoxin.

Figure 6. Alignment of TrxRs with calmodulins. In the original publication, E. coli TrxR and calmodulin
a
were alignedas shown.

158

No information is givenonwhichcalmodulinwasusedas reference. Addedare the sequencesofhumancalmodulin
b
(NCBIacces-

sionnumber: p02593) and thehomologouspart to theE. coli sequence inhumanTrxR (NCBI accessionnumber: s66677) as cal-

culatedusingClustalW. Indicatedinboldareaminoacidswithnegativelychargedsidechains.Underlinedareresidues incalmodulin

thatdobind calcium.The designation to the secondary structures (a-helix and loop) refers to the calmodulins.TheTrxR-sequences
thatcorrespond to thefirsta-helix inthe calmodulinsare infactmainlyb-strands. It becomesobviousthatboth largeandsmall TrxRs
have little in common with calmodulins and lack essential calcium binding residues present in calmodulins. Protein database

codeCLL.
344
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The question to what extent either of these systems contributes to the formation of

desoxyribonucleotides in vivo is not yet fully resolved and it is possible that at least in some tissues

other providers (e.g., via TGR in testis?) may contribute. Furthermore, differences between tissues

and species may exist. From a more theoretical point of view, it may be argued that the in vivo TrxR

activity (>1 U/ml) meets the demand for DNA building blocks, which is as high as 10 mmol/g

cells in each cycle. In mouse fibroblast cultures, Spyrou and Holmgren were able to show

that pharmacological GSH-depletion of the cells did not alter the rate of DNA-synthesis nor

reduce the desoxyribonucleotide pool.159 This may be regarded as indirect evidence for the

importance of the thioredoxin system at least in fibroblasts.159 The reliability of this interpretation

is somewhat weakend by the reported low concentration of TrxR in rodent fibroblasts as deter-

mined in an enzyme-linked immunosorbent assay (ELISA) using anti-(human-TrxR)-IgG.160 We

assume, however, that this was most likely due to the low interspecies cross-reactivity of the anti-

(human-TrxR)-IgG, as the concentrations for liver, known to contain large amounts of Trx and

TrxR,30,47,161 given in the cited report are low as well. To our knowledge, this question of the relative

importance of either system for the deoxyribonucleotide synthesis (despite its importance) has never

been addressed directly.

In rats, a study by Hansson and coworkers showed little correlation between the localization of

thioredoxin and the M1-subunit of ribonucleotide reductase.162 There may be one—even though very

speculative—explanation for this unequal distribution of Trx and ribonucleotide reductase: a direct

reduction of ribonucleotide reductase by large thioredoxin reductases—a possibility that has so far

not been taken into consideration.

D. Involvement in Hormone Action and Cytokine Function

The constituents of the thioredoxin system have been implicated in many aspects of hormone action

and cytokine function.

Reduced thioredoxin was found to be secreted from cells to the extracellular compartment by an

unusual pathway. It can act as an autocrine growth-factor synergizing with IL-1 and IL-2.163 Its

precise mode of action remains to be clarified as no receptor has been identified so far—even though

protein kinase C appears to play a role in this process.164 The data also indicate, that the redox

properties of Trx are involved in autocrine stimulation.165 However, a truncated form of Trx (Trx80/

ECEF) is also secreted by many cells and acts as a mitogen for peripheral mononuclear blood cells, yet

apparently lacks the redox properties typical for Trx.79,166

Intracellularly, thioredoxin acts as a reducing agent for several transcription factors, such as NF-

kB and the glucocorticoid receptor. However, the functional effect of reduction differs from factor to

factor: Trx-dependent reduction of NF-kB (p50 subunit) promotes enhanced DNA binding, whereas

thioredoxin-mediated reduction of the glucocorticoid receptor enhances the receptors ability to bind

the hormone.167 Interestingly, the glucocorticoid receptor also requires (an additional) reduction to

allow its binding to DNA which is, however, not due to Trx.168

There is furthermore evidence that the thioredoxin system is required for iodothyronine

5 0-deiodination by deiodinase with reduced thioredoxin acting as an enzyme activator.169

E. Protein Biosynthesis

The thioredoxin system has been reported to maintain the high activity of the rat reticulocyte protein

biosynthesis machinery. The glutathione system was not capable of replace it in this function.170,171

The precise mechanism of this process has, however, not yet been studied in more detail.

Mammalian TrxRs require selenium for their synthesis. Increasing the selenium pool leads to an

increase in TrxR activity until saturation is reached.172–174 To what extend the selenium dependent

synthesis of mammalian TrxR—if at all—therefore regulates the general level of protein synthesis,

is not known.
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5 . L O C A L I Z A T I O N , D I S T R I B U T I O N , A N D C O N C E N T R A T I O N

Even though essential for the correct interpretation of in vitro data, well-validated information on

local concentrations, tissue distribution, and subcellular localization of thioredoxin and thioredoxin

reductase is still missing. The reports are often contradictory. One reason for this might be a recently

reported heterogeneity within a TrxR population which may be of importance for subcellular

localization and even function.175,176 To complicate things even further a heterogeneous nomen-

clature is used for the different TrxRs especially in mammals. As pointed out before, we use a more

systematic nomenclature for the different TrxRs and Trxs throughout this article as described in

Table III (adapted from Ref. 39).

As a guideline Trx is an ubiquitous protein with concentrations between 1 and 20 mM (Table IV)

even though concentrations of up to 100 mM177 and tissue specific isoforms80,178,179 have been

published. TrxR concentrations are calculated to be around 1 mM in the cell.3

It is generally agreed that thioredoxin reductase activity is found in the cytosol and in

mitochondria.180–184 Thioredoxin occurs in all subcellular compartments, with considerable affinity

to virtually all cellular membranes.180,185,186 Thioredoxin reductase has also been reported in all

subcellular compartments187 and found to be membrane associated.188 However, a definite answer as

to whether TrxR must be considered a real membrane protein with remaining Trx-reducing function is

still missing. This question is of significance since many effects found for extracellular functions of

thioredoxins and other substrates are dependent on their redox state. As the extracellular (as well as

the endoplasmatic reticulum’s) milieu is oxidizing, the question must be raised if proposed func-

tions such as vitamine K reduction,189,190 plasma glutathione peroxidase reduction,191 NK–lysin

inactivation192, etc. are of physiological importance if no reducing enzyme (and reducing equivalents)

should be around (see Ref. 189 and references therein as an example for the problems that arise from

this lack of knowledge in interpreting data). Schallreuter and Wood’ study indicates that mammalian

thioredoxin reductase is capable of reducing an obligatory extracellular quaternary ammonium

compound in tissue biopsies.188 Even though these findings have not been reproduced by others and

the specificity of this assay has been questioned,193,194 the results may represent the first evidence for

transmembrane TrxR-activity in vivo. Recent immunohistochemical studies support the presence of a

TrxR associated with the plasma membrane,160 yet its precise localization and functional orientation

remains to be established.

Information on tissue specific expression varies greatly, which may in part be due to the methods

used but apparently significant species differences do exist as well. As judged from mRNA-levels in

normal cells mitochondrial hTrx-2 and hTrxR-2-levels (Table III) correlate,182 whereas hTrx-1 and

hTrxR-1 levels do not.195 One technical problem originates from using highly specific antibodies

which may have led to false negative results for either Trx or TrxR if the investigator was unaware of

the existence of isoforms within the same cell. Furthermore, some studies deal with mRNA-levels but

do not take into account that they may not correlate directly with protein levels (see Fig. 2 in Ref. 104

for an example). This should be kept in mind when interpreting the available data. When browsing

through the given information, it becomes clear that new studies on the protein level with all isoforms

of Trx and TrxR are urgently needed.

A. Blood Cells and Blood Plasma

Thioredoxin has been found in erythrocytes in considerable concentrations (see Ref. 180 and

Table IV). Thus it appears reasonable to expect the reductase as well. Cha and Kim reported

the identification of a thioredoxin reductase in human erythrocytes.196 Their first evidence was

an immunoblot using polyclonal antibodies raised against E. coli and yeast thioredoxin

reductases—both members of the small TrxR-family—to demonstrate the presence of a large

thioredoxin reductase in extracts of human erythrocytes. We and others were, however, unable to
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Table IV. Concentrations of Thioredoxins in Various Tissue Homogenates (1-Week-Old Calf)

As unfractioned tissues were used, local and subcellulardifferences in concentration are not taken into account.Thus, significant

localdeviationsfromthesesomewhat theoreticalvaluesmustbeborne inmind.TakenandcalculatedfromRef.180.

Table III. Nomenclature Used for TrxRs and Trxs in This Review

Theabbreviationsusedherearedesignedasfollows:

Species (e.g.,h¼human, r¼ rat,m¼Mouse,Dm¼Drosophila melanogaster).TrxRorTrx.

Numeric identifier. In case of humanenzymes, inhistorical orderof discovery.The enzymes ofother species shouldbe designated

accordingtothehumanisoenzymetheyresemblemost.Thisshouldfacilitatespeciescomparison.Examples.
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detect a reactivity between anti-(E. coli TrxR)-antibodies and highly purified human TrxR and

vice versa.

Neither fresh lysates from human erythrocytes nor 2 0,5 0-ADP-sepharose enriched samples

showed reactivity in immunoblots using anti-(human-TrxR)-antibodies. Our anti-(human TrxR)-

antibodies were carefully deprived of glutathione reductase cross-reacting immunoglobulins. This is

of importance, as many preparations of TrxR are contaminated with small amounts of glutathione

reductase. This glutathione reductase contaminations often result in the formation of significant

amounts of anti-(glutathione reductase)-antibodies in the immunized animal. These leads to false

positive reactions in immunoblot of samples such as red blood cells extracts which contain

glutathione reductase in abundance. Furthermore, the DTNB-reduction activity Cha and Kim had

foundj in erythrocytes depended on the presence of thioredoxins—a feature of small TrxRs. We have

analyzed (Gromer S, unpublished results) fresh lysates and 2 0,5 0-ADP-sepharose enriched extracts

from human erythrocytes by cellogel electrophoreses and were unable to detect significant direct

DTNB-reduction or a thioredoxin-reducing activity. Many subsequent studies have relied on Cha and

Kim’s paper when interpreting their data.110,111,160 As others also reported a very weak TrxR-

immunohistochemical reactivity of human erythrocytes,160 we cannot fully rule out the existence of

some TrxR-activity in erythrocytes, yet it can be concluded that the concentration of the enzyme is

extremely low. It must furthermore be taken into account, that—given the concentrations in the cell—

thioredoxin and glutathione can reduce each other (Ref. 197 and H. Merkle, personal communica-

tion). Thus, oxidized thioredoxin can be reduced by GSH which may functionally replace a TrxR in

erythrocytes.

Rat megakaryocytes and platelets showed moderate to high immunoreactivity for Trx and TrxR,

as did plasma cells whereas lymphocytes showed little if any reactivity.161 However, in im-

munohistochemical TrxR-staining experiment of human blood cells lymphocytes showed moderate

reactivity and platelets were negative. Monocytes gave strong signals, whereas granulocytes showed

little to moderate staining.160

Thioredoxin is actively secreted in its reduced state by normal and neoplastic cells through an

unusual secretory pathway.198–200 However, blood plasma Trx concentrations are low (Table IV).

Unless it is effectively re-reduced (e.g., by a membrane-associated enzyme) it is unlikely to plays a

significant role as a reductant, e.g., plasma glutathione peroxidase191 as it has been suggested.

However, it apparently does serve as a cytokine—especially in its truncated form.79,166

Also, thioredoxin reductase has been reported to be secreted into the blood plasma.160,201 Unlike

thioredoxin, thioredoxin reductase is secreted via the classical Golgi-pathway.160 The reported

concentrations (approx. 160 pM) are, however, even lower than those of thioredoxin (approx. 4.2 nM).

Even though it is tempting to speculate that a completely extracellular thioredoxin system could work,

one must take into account that a sufficient supply of NADPH (or another effective reductant) is also

required.

B. Heart

Rozell and Holmgren (unaware of the existence of rTrxR-2 and rTrx-2 at that time) found the rat heart

muscle to be essentially negative in immunostaining for TrxR and Trx.161 However, Spyrou et al. in

fact cloned mitochondrial rTrx-2 from rat heart and also showed high mRNA levels.185 In a recent

clinical case-report, Shioji et al.202 reported the results of thioredoxin immunostaining in cardiac

biopsies of a patient suffering from myocarditis (using antibodies raised against a hTrx-1 fragment).

jIt is difficult to calculate activities using the data of the report. After (NH4)2SO4-precipitation, DEAE-cellulose,

Sephacryl-200 and Blue-Gel the specific activity is given to be 81.31 DA412nm per mg and min at 37�C. From this data we

calculated that this correlates to 1 U/mg at 25�C, compared to 40 for the purified TrxR from human placenta. Even if

we assume that the purified activity is only due to 25% of the total protein, this would only increase the specific activity to

4 U/mg.
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Whereas the unaffected parts of the heart were almost negative, affected sites showed strong staining,

which was due to both—inflammatory cells and myocytes. Similar results were obtained in the rat

animal model of giant-cell myocarditis.203

TrxR-activity has been demonstrated for the murine heart 204,205 and mRNA levels in humans and

mice suggest significant expression of hTrxR-1 and hTrxR-2.104,182,206 The presence (or absence) of

TrxR in the heart muscle may be of importance since for example the clinically commonly used

anthracyclines (Fig. 18) such as adriamycin—known for their cardiotoxic effects—have been re-

ported to act as rat TrxR-inhibitors.207–209 The published inhibitory effects were only partially

reproducible in our hands when using isolated cytosolic hTrxR-1.210 It is interesting to note that

selenium supplements ameliorate the cardiotoxic effects of adriamycin in rats.211 After analyzing

the presented figures, we believe, however, that one has to be cautious not to overinterprete the

cardioprotective effects.

C. Liver and Gall Bladder

The liver parenchyma is probably the only tissue where all authors can agree on. Thioredoxin and

thioredoxin reductase were demonstrated in large amounts in rat hepatocytes, with enrichment in the

plasma membrane zone. In contrast, sinusoidal lining cells were found to be negative.161 Western blot

analysis showed the presence of both isoforms, rTrxR-1 and rTrxR-2,205 and Northern blot analysis

of the human organ resulted in similar results.182 Mitochondrial mTrxR-2 is also expressed in

mouse liver, although at much lower concentrations when compared to the predominant isoform

mTrxR-1.175 Ultrastructural investigations of rat liver showed a particularly dense association of Trx

and TrxR with the granular endoplasmic reticulum and the cisternae of the Golgi complex but these

proteins were present all over the cytosol and in the nuclear chromatin.184 Bile ducts and gall bladder

were studied only by Rozell et al. in 1985 who found a slight to moderate reactivity with Trx but not

TrxR.161

D. Spleen

The immunohistochemically investigated rat spleen was essentially negative for Trx and TrxR in the

medulla but subcapsular reticular cells and some plasma cells were intensely stained for both

enzymes.161

E. Thymus

Interdigitating cells in the thymic medulla are immuno-positive for thioredoxin (hTrx-1).212

Holmgren and Luthman report that thioredoxin concentrations in thymus ranked third after liver and

kidney in bovine tissue.180 Northern blot analysis of human thymic tissue indicated, however, a low

transcriptional level for both TrxR-isoenzymes (hTrxR-1 and hTrxR-2).182

F. Thyroid and Parathyroid Gland

The rat follicular cells exhibit large variations in Trx and TrxR reactivity which reflects their

metabolic activity—the most active cells are stained most intensely. Parafollicular cells and the

parathyroid were also intensely stained.161 The expression level of TrxR in thyrocytes is affected by

the calcium-phosphoinositol signaling pathway, which presumably counteracts increased peroxide

levels during hormone synthesis.213 The presence of thioredoxin dependent peroxidases supports this

view.214

G. Adrenal Gland

Rozell reports low to moderate staining for Trx in the rat adrenal cortex and strong reactivity in the

medulla. TrxR-reactivity was moderate to strong in either part.161
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H. Digestive Tract and Pancreas

The epithelium of the complete rat intestine as well as the pancreas show light to moderate reactivity

for Trx and TrxR with a pronounced signal in the small intestine and APUD cells. In gastric parietal

cells, the reactivity for thioredoxin was high. The exocrine Paneth’s cell of the small intestine and

pancreatic D-cells were most intense for TrxR. The Peyer patches showed intense staining caused by

plasma and M-cells. Trx and TrxR have been immunohistochemically demonstrated in the periphery

of the cytoplasm and in cytoplasmic granules of acinar and islet cells in mouse pancreas.161 The

staining for thioredoxin was more intense in the exocrine acinar cells than in the islet cells of animals

fed ad libitum. Thioredoxin reductase was more intense in the endocrine (especially D-)cells. Fed

animals showed low reactivity in the exocrine pancreas whereas starved rats exhibited an increased

signal for both enzymes in the membranous area around vesicles.215 Northern blot analyses of human

tissue are contradictory. Whereas Miranda-Vizuete and coworkers report only a faint mRNA level of

hTrxR-1 in the small intestine and an average level for the colon,182 Gasdaska et al. report higher

levels for hTrxR-1 in small intestine than in the colon.195 The reported mRNA-levels for

mitochondrial hTrxR-2 are comparable.182,195

I. Respiratory System

Nothern blot analysis revealed average mRNA levels for hTrxR-1 and hTrxR-2.182 Immunohisto-

chemical analysis of rat tissue showed high reactivity for both thioredoxin and its reductase in APUD-

cells and to a lower degree in respiratory bronchiolar epithelial cells and great alveolar cells. Alveolar

lining cells, however, showed no reactivity.161 mRNA-levels determined in humans indicate a

predominance of hTrxR-1 in this tissue.182 Interestingly, both enzymes, TrxR and Trx, are

upregulated upon oxygen breathing at birth.216

As shown by several studies, tumors of the lung and the mesothelium exhibit highly increased

levels of both enzymes, too.217,218

J. Salivary Glands

Duct cells of rat salivary glands show increasing levels of either protein with increasing diameter.

Mucous acinar gland cells showed only marginal staining and serous cells a low intensity staining.161

K. Skeletal and Smooth Muscle

Like in the case of heart muscle Rozell and Holmgren161 found these rat tissues—with the exception

of the genital tract—to be essentially negative. The positive result for the uterus was confirmed in the

work of Lee et al.205 In contrast to Rozell’s data, Northern blot analysis of human skeletal muscle

showed strong signals for both hTrxR-1 and hTrxR-2.182

L. Bone, Cartilage, and Tendons

For these tissues, only the rat immunohistochemical data are available,161 which showed moderate

staining for chondrocytes only, whereas genuine bone tissue, tendons, and periosteum were found

to be negative.161 Yet in human fetal osteoblasts a significant TrxR219 and Trx220 activity has been

determined.

M. Skin

Stratum germinativum, hair follicles, nail beds, and sweat glands in rat skin showed a moderate to

intense immunoreactivity for Trx and TrxR. Also Langerhans’ cells and melanocytes exhibit a strong

reactivity for either protein. Keratinizing cells, however, were only positive for thioredoxin.161

56 * GROMER, URIG, AND BECKER



Schallreuter and Wood purified thioredoxin reductase from human melanoma metastases188 and

report varying specific activity in several skin disease.221,222

Selenium supplement in the media of several human skin cell lines (fibroblasts, keratinocytes,

and melanocytes) leads to an increased synthesis of TrxR but also of phospholipid glutathione

peroxidase which was found to be protective against UVB-radiation induced cell death.223 It should,

however, be pointed out that Clark et al. did not find a reduction in skin tumor rates after selenium

supplements (yet incidences dropped markedly for other tumors such as prostate cancer).224

N. Kidney and Urinary Tract

Immunostaining by Rozell et al.161 of the rat urinary tract showed a low to negative reactivity. Only the

parietal cells of Bowman’s capsule and tubular cells exhibit a somewhat increased reactivity.161 This

is in contrast to more recent publications that reported mRNA levels in humans, where relatively high

mRNA levels for hTrxR-1 and hTrxR-2 are listed.182 A current immunohistochemical study of normal

rat kidneys reported high reactivity for Trx, rTrxR-1, and rTrxR-2 in proximal and distal tubular

epithelial, papillary collecting duct, and transitional epithelial cells.201 It can be assumed that TrxR

levels in rat kidney and liver are comparable.174,225 Kidneys contain large amounts of (mainly protein

bound) selenium and 50% thereof is not associated with glutathione peroxidase. Jamba et al. present

an autoradiograph from a 75Se-labeled mouse kidney extract (Fig. 2 in Ref. 226) which shows two

58 kDa bands in different fractions—most likely mTrxR-147 and mitochondrial mTrxR-2.

O. Prostate, Testis, Ovary, and Uterus

In the rat female genital system, an intense immunostaining for both proteins is reported for follicular

cells, early luteal and theca interna cells as well as for the germinal epithelium. Oocytes, atretic

follicles, and old luteal cells were essentially negative.161 The uterus and Fallopian tube showed a

moderate staining. The male genital system was intensely stained for thioredoxin (but not for TrxR) in

Leydig’s interstitial cells of the testis and some spermatogonia. Thioredoxin reductase was found in

spermatocytes, spermatides, and Sertoli cells. The prostates, seminal vesicles, and epididymis’s

epithelium were moderately to intensily stained for both proteins.161 In testis a tissue specific

selenoenzyme, closely related to TrxR—in fact initially assumed to be a pure TrxR (‘‘hTR2’’)104—

now referred to as thioredoxin-glutathione reductase (TGR)105 is present.

High TrxR–mRNA levels were reported in human prostate, testis, and—in contrast to the protein

data gathered with the rat tissue—in the uterus. Trx–mRNA levels were considerably lower in these

tissues.195

Two testis specific proteins with a CGPC-thioredoxin motif, which have therefore been named

sperm specific Trx (Sptrx), have recently been identified: hSptrx-1,178 a cytosolic protein, exhibits Trx

activity, yet it appears that its cellular function is to act as an oxidant.80,81 Its expression is restricted to

the postmeiotic phase of spermatogenesis. As oxidation processes are important steps during

spermatogenesis is speculated to play an essential role for the development of the sperm. hSptrx-1

(53 kDa) is far larger than typical thioredoxins and furthermore forms oligomers. It contains several

putative phosphorylation sites which supports the concept of a regulated or regulating factor in

spermatogenesis, particular in tail formation.227

hSptrx-2, present in the cytosol and nucleus and expressed from the pachytene stages onwards, is

apparently monomeric.179 Apart form its Trx domain containing the classical CGPC-motif, the

protein possesses 3 putative NDP kinase domains. However, no catalytic function, neither classical

Trx redox activity nor NDP kinase activity could be demonstrated. Thus its function remains

speculative. It is argued that it might be a substrate of TGR. This would explain the presence of this

tissue specific reductase. However, activity of the recombinant protein may have also been missed as

regulatory phosphorylation did not occur in the heterologous expression system, which could have

prevented the formation of the correct folding required for activity. Its low similarity (approx. 25%179)
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with other thioredoxins (including Sptrx-1) raises the question if this protein should in fact be

subsumed to the thioredoxins if subsequent studies should also fail to demonstrate thioredoxin-like

activity.

In one clinical case report, autoantibodies directed against thioredoxin reductase were reported in

a patient with ovary adenocarcinoma.228 However, this study used the E. coli TrxR for affinity

purification, thus it is likely that the patient had developed antibodies after a bacterial infection and

not—as claimed—auto antibodies. Nevertheless, it is well possible, that autoantibodies against Trx or

TrxR are much more common than previously thought. If this should turn out to be correct, it may

serve as a new parameter for diagnosis and follow-up in cancer patients.

P. Nervous Tissue

In the rat, large nerve cells of the central as well as of the autonomous and peripherial nervous system

showed moderate to intense staining for Trx and TrxR as did most neuroendocrine cells, the choroid

plexus epithelial cells, ependymal cells, and retinal pigment cells. Glia and stromal cells were

essentially negative.161 Significant concentrations of Trx (and glutaredoxin) are found in the

hypophysis.229 Data given by Hill et al.174 indicates that TrxR-activity in the brain is protected even in

states of selenium deficiency. Within the neuron, the thioredoxin system has been implicated in

microtubule assembly.230,231

6 . B I O C H E M I C A L P R O P E R T I E S

A. Catalytic Mechanism and Substrate Specificity

The substrate spectra of large and small TrxRs differ enormously. Whereas the small TrxRs exhibit a

very narrow spectrum with thioredoxin being almost the sole substrate, large TrxRs stand out for their

‘‘omnivorous’’ behavior—with the selenium dependent isoenzymes at the top. Small, non-protein

molecules such as 5,5 0dithiobis-(2-nitrobenzoate),232 alloxan,33 dehydroascorbate,107 selenodiglu-

tathione,37,233 ebselen,234 S-nitrosoglutathione,38 alkylhydroperoxides, methylseleninate100 are as

well substrates as are proteins like thioredoxin,34 NK-lysin,192 protein disulfide isomerase,35 plasma

Figure 7. The catalyticmechanismof humanandother largeTrxRs.A: A computermodel of homodimericmammalianthioredoxin

reductase.Theproteinbackbone is shownasaribbon, eachsubunit inadifferentcolor.ThetwoboundFADmoleculesareshownas

space fillingmodels. B: One catalytic reaction center is formedby two subunits.The backbone ofone is shownas strands, whereas
thebackboneof theopposite subunit is shown in ribbon representation.Bound FAD (grey) andNADP

þ
(lightgrey) are represented

as stick-models.The flavin near the N-terminal redox active site (Cys59 and Cys64) is providedbyone subunit, and the C-terminal

redoxactive site of the same reaction center by the other subunit (Cys 0497 and Sec 0498).This explains, whyonly thehomodimer is
catalytically active. Each dimer forms two independent catalytically active centers.The sulfurand seleniumatoms of the N-terminal

cysteinesandof thereducedC-terminal CysandSecresiduesare indicatedby theirdottedvan-der-Waals-radii.This representation

isbasedonthecrystalstructureofU498Cc-rTrxR
328

(PDB-ID:1H6V)usingRasWinV2.7.1.1for visualization.C:Sketchofthepostulated
mechanismforTrx reductionby largeTrxRs.

235,236
Onlyonereactioncenter, yet formedbybothsubunits (indicatedbyblackandgrey

lines), is shown.The oxidizedenzyme (Eox.), due to thehighNADPH:NADP
þ
-ratio ispresumablya rare species under in vivocondi-

tion, canbe reduced to an EH2 species by NADPH.
32
The N-terminal redox active site exchanges the electrons with the C-terminal

redoxactive site of theopposite subunit (seeRefs. 351and353). Additional reducingequivalentsprovidedbyNADPHare takenupto

yield an EH4-species (Ref. 32 and S. Gromer, L.D. Arscott, C. H.Williams, Jr., unpublished results).The previously reported potential

uptake of two further electrons (to a total of 6) as indicated by a dithionate titration
32,39

is presumably an artefact (C. B˛hme, L.D.

Arscott, and C.H.Williams, Jr., personal communication). Selective digest experiments suggest that the reduced C-terminal tail now

moves to amore solvent exposed position.
48,235

Oxidized thioredoxin reacts with the reduced C-terminal tail’s selenolate to yield a

mixedselenenylsulfide,which is cleavedby theadjacent thiol (Ref. 351), toyield reduced thioredoxinand the initial TrxR-EH2-species.

Steady-state kinetics demonstrated an overall ping-pongmechanism as inidicated by this model.
57
It should, however, be pointed

out, thatanewmoleculeofNADPHmightbindprior tothe endoftheoxidativehalf reaction, assuggestedbypre-steadystate experi-

ments with thehumanenzyme (L.D. Arscott, S.Gromer,C.H.Williams, Jr., unpublished results).

58 * GROMER, URIG, AND BECKER



Figure 7.
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glutathione peroxidase,191 calcium-binding proteins 1 & 2,82 and many others. Even though there are

minor differences within this list between the different large TrxRs and even though the physiological

importance of many of these reactions is unproven a hypothesis for the catalytic mechanism must take

them into account.

In collaboration with others we outlined and published a now widely accepted hypothesis for the

catalytic mechanism of human thioredoxin reductase (Ref. 235 and Fig. 7) which is based on pre-32

and steady-state kinetic.57,235 This hypothesis should in its principles be applicable to all large TrxRs.

Recent findings (Gromer et al.351 and Bauer et al.353) further refined this initial model.

A key feature of the proposed mechanism of large TrxRs is the C-terminal relatively flexible tail

which is responsible for the transport of electrons from the buried redox-center near the flavin to bulky

substrates at the surface. The more exposed position of the reduced C-terminus enables a broader

range of substrates to be reduced, but small molecules can also (although generally less efficiently)

take over reducing equivalents from the N-terminal active site. A blueprint of the course of events

for both types of TrxRs is shown in Figure 7.

The key intermediates of proposed mechanism (Fig. 7), especially the selenenylsulfide-bridge

have meanwhile been confirmed by Zhong et al.236 and Lee et al.54

The catalytic mechanism of the small TrxR is already known in atomic detail and shows a lot of

differences to its large counterpart, the main feature being a domain rotation of 66� does not occur in

large TrxRs (Fig. 8).

It should be pointed out, that either of the catalytic mechanisms of the two classes of TrxR—small

and large—as well as some of the involved essential structures, in particular, the C-terminal sequence

of the large TrxRs appear to be rather unique not only between species, but also within the same

organism. Thus the development of mechanism-based drug-design is a promising approach, as it

appears that the isoenzymes of, for example, host and pathogen can be chemically and therefore

therapeutically differentiated.

7 . M E D I C A L A S P E C T S

The thioredoxin system is involved in numerous cellular functions with potential medical

applications. We would like to discuss some of these below.

A. Infectious Diseases

Infectious diseases are caused by transmittable pathogens such bacteria, fungi, parasites, viruses, and

prions. Apart from prions possibly they all face the lethal armory of the host’s immune defense

system: reactive oxygen species formed by macrophages, pore forming immune toxins, and

inactivating immunglobulines to name a few. To survive in this hostile environment, the pathogen

needs effective defense mechanisms. As it is the survival of the species and not of the individual

that is of importance in the long run, a rapid multiplication of pathogens is normally also of

importance.

As already pointed out the thioredoxin system, if present, is a key player in the antioxidative

system of the cell and may thus be regarded as part of the first line of defense against the immune

system’s respiratory burst as well as metabolism’s ROS-byproducts. At least in vitro thioredoxins

are capable of reducing immunoglobulins which leads to their inactivation.237 Not all thioredoxins

can inactive all subtypes of immunoglobulins nor is it proven that secreted Trx is in fact capable to

reduce and thereby inactivate immunoglobulines in vivo to a relevant degree. There are, however,

clinical and pathological findings such as the virtual absence of immunocomplex deposits on

Helicobacter pylori—that could be explained by this proposed mechanism.97 Even though there are

reports that bacteria lacking thioredoxin and glutaredoxin can survive and multiply in vitro, it must be
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pointed out that the growth rate was reduced and the bacteria required a nutritious medium for

survival.238 Thus it remains tempting to speculate that specific inhibitors of small TrxRs might serve

as novel and effective antibiotics which, because of the significant differences to human isoenzymes,

should exhibit only few side-effects. In fact, competitive inhibitors of E. coli TrxR, azelaic acid

(Fig. 17B) and related compounds, are known to posses bacteriostatic effects.239 It should be pointed

out that these compounds were published as inhibitors of the human enzyme, yet most of the study

was in fact done using E. coli TrxR as a substitute.240,241 Using the enzyme purified from human

placenta—we did not observe a significant inhibition up to 10 mM—a concentration that implies that

contaminations of the ‘‘inhibitor’’ (assuming a 99% purity) may be already present in micromolar

concentrations. This finding once again may highlight the importance to carefully review and

interpret data gathered with a different system. However, it also supports the concept of a selective

antibiotic since the compound does not inhibit the human enzyme in therapeutic concentrations.

Similar considerations can be made for fungi which also express small TrxRs. Due to its

socioeconomic importance, we would like to point out one variant of small TrxRs: Mycobacterium

leprae has fused thioredoxin with thioredoxin reductase on the gene and protein level.242–244

Figure 8. The catalytic mechanism of E. coli TrxR (derived from data presented in Refs. 345^347). Grey shaded structures re-

present transiently reduced states. The enzyme cycles between a two electron reduced state (EH2) and a four electron reduced

(EH4) state during the catalysis.
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This particular composition may serve as a new starting point in the search for new drugs again

leprosy.

The species differences at the C-terminus of large TrxRs might serve as novel targets for

antiparasitic drugs. For malaria, it was shown by Müller and coworkers that the falciparum

thioredoxin reductase is essential for the Plasmodium parasite at least in the erythrocytic stages of its

complex life-cycle.245 A similar dependence was found in Schistosoma mansoni and its large TrxR-

related thioredoxin–glutaredoxin reductase.106

Many important (especially so called tropical) diseases like malaria are vector born. As TrxR is

apparently essential for many of these insects95 and structurally different from the human enzyme it

appears promising to develop TrxR-inhibitors for the vector’s enzyme (Refs. 60 and 352). Caution

must, however, be taken, as it is very likely that TrxRs of many insects are similar, and thus unselective

spraying of the environment with such inhibitory compounds to eliminate the vector of a disease may

result in unexpected and deleterious effects on many ecosystems. For a more detailed review on the

thioredoxin system of parasites (see Ref. 10).

A number of viral diseases are associated with increased plasma thioredoxin levels which is

regarded a marker of oxidative stress. Epstein–Barr virus (EBV) and human T-lymphotropic virus

type I (HTLV-1) are the best known examples, yet we will deal with them in a later section. In one

report hepatitis C virus (HCV) related diseases—asymptomatic carriers, chronic hepatitis as well as

liver-cirrhosis and hepatocellular carcinoma—were associated with significantly increased serum

levels of thioredoxin.246 One of the escape mechanisms of the hepatitis C virus leading to its high rate

of chronicity (> 70%) is its high mutation rate which is assumed to be mainly due to the high error rate

of the viral RNA-polymerase.247 However, in the above cited article by Sumida et al.,246 it was further

noted that serum Trx levels correlated inversely with the results of interferon treatment. It is thus

tempting to speculate that an increased Trx serum level reflects an increased cellular level of oxidative

stress resulting in a further increased mutational rate of the HCV-genome in these patients but also of

the host cell’s DNA. This may eventually result in hepatocellular carcinoma (HCC). It must, however,

be stated, that others did not find increased levels of serum thioredoxin248 in patients suffering from

HCV-related liver disease other than hepatocellular carcinoma. In fact, Trx-levels do decrease after

the surgical removal of the tumor. Apart from its potential diagnostic value,249,250 these findings need

confirmation as they may have significant impact on therapy as well: animal models with chemically

induced neoplastic liver nodules indicate that cytosolic TrxR activity increases (350%) whereas

mitochondrial TrxR activity decreases by approx. 60% in comparison to healthy liver tissue.251 The

net result is an increased cellular resistance against the immune system’s oxidative armory and

facilitated DNA-synthesis due to the increase in cytosolic TrxR activity. The tumor’s benefit, if any,

from the decrease in mitochondrial TrxR activity remains unclear, as it is assumed that higher

activities are protective against apoptosis. Elevated mitochondrial hTrx-2 levels are reported to be

protective against etoposide (VP-16) toxicity.153 The observed decrease in mitochondrial TrxR

activity might thus be the biochemical basis for the clinically observed superiority of the

combinational therapy of etoposide and adriamycin.252 These findings do, however, result in a

relevant clinical problem: if serum thioredoxin levels mirror cellular oxidative stress it is reasonable to

treat preneoplastic lesions (e.g., asymptomatic HCV carriers, acute and chronic hepatitis and liver

cirrhosis) with selenium and other antioxidants, yet this therapy may bounce as soon as the disease

has progressed to a true neoplastic lesion. Clinical data do, however, also suggest that selenium

supplements are also beneficial in overt tumors, indicating that other mechanisms are involved as

well.253,254

Also HIV-infected individuals show increased serum thioredoxin levels255,256 and these levels

correlate well with stage and progression of the disease. Full-length hTrx-1 does suppress HIV-

production.257 Macrophages, however, are capable of converting thioredoxin into the C-terminally

truncated �10 kDa protein called ‘‘eosinophil cytotoxicity-enhancing factor (¼ECEF)’’ which in

contrast enhances HIV-production.257 As the determination of ‘‘thioredoxin’’ in the studies by

62 * GROMER, URIG, AND BECKER



Nakamura et al.255 were done using monoclonal antibodies directed against specific epitopes of

the Trx-protein it may be argued that ECEF was misinterpreted to some extent as its precursor Trx in

HIV-infected patients. Recent reports suggest, that ECEF is identical with Trx80,79 which has also

been reported to be present in the plasma of healthy individuals.79

In contrast to serum levels an earlier publication on lymph node biopsies of HIV-patients reports

a significant loss of thioredoxin-production in this tissue.258

The interpretation that HIV is accompanied—especially during the later stages of the disease—

by a significant burden of oxidative stress is supported by many studies.259–262 This may be at least in

part due to the decreased synthesis of the antioxidative selenoproteins glutathione peroxidase263 and

TrxR and an increase of low molecular weight Se-compounds.264 The precise mechanism for this

change remains unclear, yet it is noteworthy that selenium supplements appear to be clinically

beneficial.265 If we assume that it is the conversion of secreted Trxinto ECEF/Trx80 enhances the

progress of the disease, the clinical consequences should be to counteract oxidative stress by

antioxidants and to inhibit the conversion of Trx into ECEF/Trx80 (Fig. 9). If this is possible a co-

treatment with recombinant thioredoxin may become beneficial, too. However, as the presence of a

truncated Trx (Trx80/ECEF) was recently reported in the plasma of healthy individuals,79 it may well

be that it serves essential physiological functions.

The thioredoxin system was linked to prion diseases in one report.266 Prion diseases like bovine

spongiform encephalopathy (BSE), widely known as mad cow disease, and its human counterpart

Creutzfeld-Jacob-syndrome (CJS) are most likely caused by a different conformation (PrPSc) of a

cellular protein (PrPc) which leads to PrPSc-precipitation and consecutive cell death (for a review see

Ref. 267). It is known that the ‘‘normal’’ conformation can be precipitated using reducing agents such

as dithioerythritol (¼DTE). In vitro, the thioredoxin system is capable to perform this task much

faster. However, the resulting structure does not show proteinase K resistance as does the ‘‘naturally’’

converted protein. Furthermore, the conformational change from PrPc to PrPSc is believed to take

place in the endoplasmatic reticulum. The data on the presence or absence of a functional thioredoxin

system with access to this compartment are, however, contradictory, despite the recent discovery of

ER-proteins with thioredoxin related CXXC-motifs.84 Treatment of infected animals with effective

TrxR and/or Trx-inhibitors—which should result in some protection—might provide further insight

into this interesting, yet highly speculative link of the Trx-system.

Figure 9. Scheme of the interaction of thioredoxin, ECEF/Trx80 and HIV-production based upon Refs. 257, 348. Also indicated are

theoretical therapeuticapproaches.White arrows indicate stimulation, darkarrows inhibition.
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B. Non-Infectious Diseases

1. Neoplastic Diseases

The sequence of events in the course of a tumor is often divided into five stages—initiation or

transformation, progression, local invasion, distant metastasis, and finally resistance to therapy. In all

stages, the thioredoxin system may play a role. During initiation, the cell is damaged on the DNA

level in multiple ways leading to an increased product of cell-division rate and cellular lifespan. Many

carcinogens act either directly or indirectly via the formation of radicals such as reactive oxygen

species. Thus, the antioxidative properties of the thioredoxin system should be able to reduce the

burden of these potentially deleterious agents. The fact that in clinical trials selenium sup-

plementation led to a reduction of several tumor entities incidence rates224 may be regarded as indirect

evidence for this proposition: selenium supplementation increases glutathione peroxidase and

thioredoxin reductase activities which in turn leads to the formation and maintenance of methyl-

selenol (Fig. 10)—a compound considered to be a key metabolite in the tumor-preventive effects of

selenium.172,268,269 Methylselenol is a small compound which can easily penetrate membranes and

react with ROS and thereby detoxify them. The oxidized product—either methylseleninate or

methylselenenate—are easily reduced by thioredoxin reductase to methylselenol in the methylse-

lenol-cycle (Fig. 10).100 Thus, methylselenol is considered to be capable of clearing membranes from

potentially harmful agents also in areas that are inaccessible to charged antioxidants like GSH.

It must, however, be pointed out that the dose–effect-relationship of selenium is not completely

linear and apparently much more complex as—at least in vitro—very low selenium supplements have

been shown to increase cell growth rates.270

During growth and progression phase, the before beneficial effects of the thioredoxin system

may change to its opposite. Being responsible for providing reducing equivalents to ribonucleotide

reductase, it is involved in a central process of cell division. As pointed out earlier, other systems

can substitute for the thioredoxin system at least in vitro yet it is typical for all proliferating tissues

to show increased TrxR and Trx content in immunostaining when compared to resting tissue.161 It

is therefore not surprising that almost all tumors studied so far exhibit several fold increased

TrxR- and Trx-levels.152,217,218 The thioredoxin system furthermore protects the transformed cell

from attacks of the immune system as it detoxifies, e.g., hydrogen peroxide and several nitric oxide

Figure 10. Methylselenol-cycle.Reactiveoxygenspecies (ROS), formedforexample inornear theplasmamembranearedetoxified
tononreactive products (non-ROS) bymethylselenol.The resultingoxidationproducts, methylselenenate andmethylseleninate are
charged and thus expelled from the membrane to the cytosol. Here methylselenol is regenerated by thioredoxin reductase (or by

reducedglutathione) thereby completing themethylselenol-cycle.
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species.38,271 It has also been shown that mammalian TrxR and Trx can inactivate NK-lysin—a pore-

forming peptide in the armory of natural killer cells.192,272 The in vivo significance of this last finding

depends on the presence of active TrxR in the plasma membrane or in the extracellular fluid with the

need for a supply of reducing equivalents by (most likely) NADPH. Even though TrxR has been

described as membrane associated188 and even as a product that might be secreted by cells, it has

never been shown that there is a direct interaction between intracellular reducing equivalents, TrxR

and extracellular substrates. It has been argued that reduced Trx, which is known to be secreted, may

perform this reducing task. Taking the energy required to produce and secrete Trx into account, this

sounds unlikely if the sole purpose was to provide two reducing equivalents, thus one may speculate

that the secreted Trx must be kept in a reduced state by a (functional) TrxR in order be have

significant impact on compounds such as NK-lysin. Apart from a reduction by a TrxR in the plasma

membrane whose cytosolic domain would obtain its electrons from NADPH,273 one could think of a

reuptake-mechanism. A Trx reuptake is known, yet it remains unclear if the protein stays intact in

this process.274

Thioredoxin and truncated Trx secretion are common features of normal and especially

neoplastic cells. Acting as mitogenic cytokines they can promote tumor formation and propagation.

This is of importance not only in rare cases but in quite common diseases such as B- and T-cell

leukemias.275,276

Thus the thioredoxin system may influence virtually all four phases of tumorgenesis via its

involvement in transcription and translation.

Furthermore, the thioredoxin system may be involved in a serious clinical problem: drug

resistance. As many drugs directly or indirectly induce apoptosis, one must recall that many functions

of the thioredoxin system are antiapoptotic. Thus, it is not unexpected that many highly chemotherapy

resistant tumors express high levels of TrxR and Trx.275–280 Thioredoxin system inhibitors should be

capable to overcome or at least ameliorate this serious medical problem.

2. Non-Neoplastic Diseases

a. Rheumatoid arthritis and related diseases. To subsume rheumatoid arthritis and associated

diseases here is somewhat arbitrary as the etiology of this common disease remains unresolved and

some infectious agents—especially of viral origin (e.g., Epstein–Barr virus see Ref. 281)—are still

prime candidates. Reasons to discuss it along with neoplastic diseases can be given too.

Sjögren’s syndrome, a chronic systemic inflammatory disorder associated with EBV infection, is

characterized by lymphocyte infiltration of mucosal and other tissues.282 The patients suffer from

dryness of the eyes, mouth, and other mucous membranes as well as from rheumatic symptoms. This

syndrome shares features with rheumatoid arthritis (RA), a very common chronic disease charac-

terized by symmetrical inflammation of peripheral joints; indeed the two conditions can appear

together.281 In the inflamed tissues of patients with Sjögren’s syndrome, a strong correlation between

virion production and Trx synthesis was observed.282 The fact that the activity of IL-1, an inflam-

mation mediator in rheumatoid arthritis, is enhanced by reduced Trx which itself is an effective

growth factor also in lymphatic tissues supports the notion that the Trx-system is involved in the

pathophysiology of chronic diseases.163

The potential involvement of TrxR in the pathogenesis of rheumatoid arthritis is underlined by

recent in vivo data. Significantly increased levels of Trx and TrxR were found in synovial fluid and

tissue—but not in blood plasma—of patients suffering from rheumatoid arthritis. This was not the

case in individuals with other joint diseases such as gout or osteoarthritis.283 In rheumatoid arthritis,

the synovial Trx-levels correlated with the local severity of inflammation. This supports the idea to

consider the Trx-system not only as a drug target for the treatment but also as a potential clinical

parameter for diagnosis and therapeutic management since local alterations normally precede

systemic symptoms.
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Another indication is that organic gold compounds such as auranofin and aurothioglucose are

widely and effectively used in the treatment of rheumatoid arthritis.281 These compounds are known

to be highly effective inhibitors of thioredoxin reductase and do act as such in vivo as shown, for

example, in a mouse model.284 The gold compounds are primarily accumulated in immune cells and

lead to a reduced cytokine induced release of granule proteins in adherent neutrophils.285 This

selective accumulation may explain why ROS generation is decreased despite the inhibition of the

antioxidative enzyme TrxR.

b. Arteriosclerosis. Results on the involvement of the thioredoxin system in the prevention but also

in the development of arteriosclerosis are still limited and in part contradictory. A reason for this might

be the finding that endothelial cells from different species and tissues do not show identical patterns of

selenoenzymes.286 Whereas assayed human cells were comparable, bovine and porcine cells were

not. Human umbilical-vein endothelial cells (HUVEC) exhibit increased TrxR-levels after selenium

supplements, which are known to protect endothelial cells from oxidative damage.287 The thioredoxin

system has, however, also been reported to be involved in the formation of the neointima in

arteriosclerotic lesions.288 It remains therefore unclear if the thioredoxin system is solely beneficial or

whether conditions exists in which its action becomes harmful.

c. Reperfusion injury. Reperfusion injury is believed to be largely due to the formation of ROS in the

early stages of reperfusion. Lung289,290 and cardiac reperfusion injury291 was found to be ameliorated

by thioredoxin infusions. However, in the case of cardiac reperfusion injury it turned out that 100 nM

thioredoxin was superior to 1 mM in preventing arrhythmias. Assuming—as proposed—a radical

scavenging mode of action, this result is at least unexpected. So far there is no proven enzyme that is

capable of efficiently reducing extracellular thioredoxin. 100 nM is, however, an extremely low

concentration for a radical scavenger per se as we have to assume that it cannot be recycled. Thus the

data presented so far are indicative, yet not convincing to us. The beneficial effects of Trx may,

however, result from Trx acting as a signal molecule and not primarily as a radical scavenger. One

more recent study indicates that the combination of a thiol donor, such as N-acetyl-cysteine and Trx,

might turn out to be superior.292

In any case, it must be proven that the use of i.v.Trx is of such benefit that it justifies the high costs.

Furthermore, one must take into account potential long-term side effects, e.g., on occult neoplastic

cells.

8 . I N H I B I T O R S O F T H I O R E D O X I N A N D T H I O R E D O X I N R E D U C T A S E

Given the large number of processes the thioredoxin system influences, relatively few truly different

inhibitors of the involved enzymes are known. Indeed far less than 200 entries are found today in

Medline using the keywords ‘‘thioredoxin inhibitor’’; many thereof do not even deal with direct

inhibition of Trx or TrxR. Unfortunately a number of inhibitors are not listed in Medline, reducing

the access for the broad community. Technically speaking, care must be taken as many compounds are

reduced by large TrxRs at the expense of NADPH. If their KM-value is significantly lower than

the KM-value of the assay substrate (e.g., DTNB-reduction-assay: KM for DTNB is around 500 mM)

and NADPH-consumption is not measured directly compounds may easily be mistaken as

inhibitors.232,293 This may have supported, e.g., the assumption that ebselen is an inhibitor of human

TrxR294 whereas Arteel et al. identified ebselenoxide as a substrate of the enzyme.234

A. Inhibitors of Thioredoxin

Trx inhibitors are a rather recent concept and to our knowledge only a few selective compounds have

so far been published as being effective. From a theoretical point of view, they may have some ad-

vantages in cases where solely extracellular Trx-activity but not TrxR plays a disease-promoting part.

66 * GROMER, URIG, AND BECKER



1. Alkyl-2-Imidazolyl Disulfides and Related Compounds

These compounds were originally designed as TrxR inhibitors but during subsequent studies it turned

out that some of them inactivated Trx at concentrations far below those needed for TrxR

inhibition.295–297 It is proposed that it is the time and concentration dependent irreversible

thioalkylation of Cys73 of hTrx which leads to inactivation and is responsible for their growth

inhibiting effect.296

In cell culture experiments, primary cells from an acute T-cell lymphoblastic leukemia were

effectively treated with 1-methylpropyl-2-imidazolyl disulfide (Fig. 11A).275

2. Naphthoquinone Spiroketal Derivatives

A series of naphthoquinone spiroketal compounds has been synthesized and tested for their inhibitory

effects on the thioredoxin system.298 Some compounds preferentially inhibited TrxR, others Trx. The

IC50-values for many of these compounds are in the lower micromolar range. For the most potent

one’s, palmarumycin CP1 (Fig. 11B), it was only 350 nM when measuring Trx-inhibition. In cell

growth inhibition assays, these compounds were effective as well, but even many of those compounds

that did not inactivate the thioredoxin-system turned out to be valuable cell growth inhibitors. It is

therefore reasonable to assume that this family of inhibitors has at least one further cellular target.

Related to this group is pleurotin. It’s IC50-value for the thioredoxin system has been reported to

be 170 nM.299

B. Inhibitors of Thioredoxin Reductase

Most irreversible inhibitors of thioredoxin reductase act apparently via a reaction with one or more

redox-active residues (Cys and Sec) as they do not affect the enzyme in the absence of NADPH in most

cases indicated. Thus electrophilic agents are candidates for a potential inhibitory effect.

1. Nitrosoureas

Nitrosoureas, such as the clinically still widely used carmustine, are non-selective carbamoylating or

alkylating agents that easily react with thiols and selenols but also other functional groups.300 Most

of these compounds are unstable in solution and rapidly disintegrate to form their reactive

intermediates (Fig. 12B). Therefore, comparatively high—that is millimolar concentrations—are

used for the treatment of brain tumors and certain lymphomas. One advantage of nitrosoureas is their

capability to cross the blood–brain barrier.

All members of the glutathione reductase enzyme family in their reduced form are inhibited by

nitrosoureas (see e.g., Refs. 300–302). TrxR is no exception to this rule. The first report on human

TrxR inhibition was published by Schallreuter et al.303 All tested nitrosoureas (Fig. 12A) effectively

inhibited the NADPH-reduced enzyme. Similar results for the human placenta and the mouse enzyme

were later published by our group.32,47,210 However, Schallreuter et al. also claim that the inactivation

by nitrosoureas was reversible by the addition of reduced thioredoxin (in the case of TrxR) or reduced

Figure 11. A: Structure of1-methylpropyl-2-imidazolyl disulfide (also referred to as PX-12 or III-2). B: Palmarumycin CP1. Both com-

pounds canalso inhibit TrxR, yet, theyactmainly via the inhibitionof Trx.
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glutathione (in the case of glutathione reductase). At least for glutathione reductase this finding was

not reproducible in our hands in vitro,k nor did DTE reactivate the nitrosourea inactivated TrxRl.

Nitrosoureas are—as pointed out before—unselective and difficult to handle. We therefore do not

recommend them for routine TrxR inhibition. Their effect on TrxR must, however, be taken into

account when they are used for other purposes.

2. Gold Compounds

Gold containing formulations have been used in medicine for ages. At the end of the 19th century,

heavy metal compounds gained considerable interest as chemotherapeutic agents.305 Drugs with a

proven effect are the antirheumatic gold(I)-compounds (Fig. 13), even though their mode of action is

still a matter of debate. The interaction of gold(I) with selenoenzymes was first addressed by

Chaudière and Tappel306 who investigated the effects of aurothioglucose on glutathione peroxidase

and by Berry et al.307 who studied its effect on deiodinase I.

Figure 12. A: Nitrosoureas known to inhibit humanTrxR
32,303

. The basic structure�1-(2-Chloroethyl)-N-nitrosourea�is given in

(a).The different substituents for R in (a) of several nitrosoureas are givenbelow: (b) 3-[(4-amino-2-methyl-5-pyrimidinyl)-methyl]-1-
(2-chloroethyl)-N-nitrosourea (nimustine, ACNU); (c) 1,3-bis-(2-chloroethyl)-N-nitrosourea (carmustine, BCNU); (d) 1-(2-Chlor-
oethyl)-3-cyclohexyl-N-nitrosourea (lomustine,CCNU); (e) Fotemustine. B: Formationof reactive carmustine (BCNU) intermediates
and their reactivity withanenzymic cysteine.The formationof thealkylating intermediate is considered tobeslower, thus carbamoy-

lationisfavored (lefthandbranch). Inthecaseof1-(2-chlorethyl)-3-hydroxyethyl-N-nitrosourea (HeCNU; righthandbranch), inwhich
one of the chlorine atoms (here shown in italics) is replaced by a hydroxyl group, an intramolecular carbamoylation takes place,

favouring thealkylatingreactionof the remaining intermediate.
301,349

kBabson and Reed304 do, however, report a slow reactivation of glutathione reductase in erythrocytes after nitrosourea

treatment.
lThe carbamolyating modification of glutathione reductase can be lost if the enzyme is fully denatured. This technique

does, however, also lead to a loss of enzymatic activity.
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Kristina E. Hill was the first to study the effect of aurothioglucose on rat TrxR in crude extracts174

and actually developed an TrxR-tissue assay based upon her results.308 At the same time, we studied

aurothioglucose and auranofin as inhibitors of purified hTrxR-1.57 More recently, aurothiomalate was

also identified as an inhibitor of mammalian TrxR by Smith et al.204

Thioredoxin reductase is far more susceptible toward inhibition by gold compounds than

glutathione peroxidase or glutathione reductase. Auranofin acts upon TrxR in almost stoichiometric

concentrations (Ki ¼ 4 nM). Glutathione reductase and glutathione peroxidase are inhibited in the

micromolar range, that is at 1,000-fold higher concentrations. We have thus modified the original

TrxR-tissue assay by Hill et al. using auranofin, as this compound is easier to handle and more

selective than aurothioglucose.293

Gold(I) complexes and especially auranofin are among the most effective and selective inhibitors

of mammalian TrxRs known today. One further advantage of auranofin is the fact that it is

commercially available, well soluble, and relatively stable in DMSO.

Rigobello et al. reported that auranofin is also capable of inhibiting mitochondrial rTrxR-2,155

which results in mitochondrial swelling and apoptosis. These findings are consistent with an increased

mitochondrial membrane potential under hTrx-2 overexpression as reported by Damdimopoulos

et al.153

Auranofin has been evaluated in screening trials as a potential antineoplastic agent as early as

1981.309 It proved at least as effective as 5-fluorouracil and cisplatin, both commonly used cytostatic

drugs. At that time, the inhibitory effects of auranofin on TrxR were of course not known. It was,

however, stated, that DNA-synthesis decreased rapidly under auranofin treatment. The used amount

of auranofin was 6 mg/kg body weight. Assuming an equal body distribution a resulting concentration

of approx. 10 mM can be calculated. Taking our results into account, it is unlikely that the resulting

inhibition of glutathione reductase (<40% at this concentration) is responsible for the effect. One

may thus regard the effects of auranofin on DNA-synthesis309 as supporting evidence for the

importance of TrxR in the synthesis of desoxyribonucleotides in mammals. However, others could not

reproduce the effectiveness of auranofin on other cells310 and also reported a non-selective inhibition

of DNA, RNA, and protein synthesis caused by auranofin.

3. Platinum Complexes

Cis–platinum(II)-complexes are well known antineoplastic compounds. Two compounds—

cis-diamminedichloroplatinum(II) (CDDP, cisplatin, Fig. 14a) and cis-diammine-(1,1-cyclo-

butanedicarboxylato)platinum(II) (CBDCA, carboplatin, Fig. 14b)—are clinically widely used as

Figure 13. Several organic gold compounds, clinically commonly applied as antirheumatic drugs, are effective inhibitors of mam-

malian TrxR in vitro57,155,174,308 and in vivo.204,284 Shown are the structures of (a) auranofin (Ridaura
1

); (b) aurothioglucose
(Solganol

1

); and (c) disodiumaurothiomalate (Myocrisin
1

).Other selenoenzymes have been shown to be inhibitedby these com-

pounds as well,
306,350

whereas the Cys-containing enzymes are by orders ofmagnitude less susceptible, indicatinga selectivity for

selenolates.ForTrxR inhibition, almostonly stoichiometric concentrations are required, rendering this enzymeaprime candidate for

the still not resolvedmodeofactionof these drugs.
57

THE THIOREDOXIN SYSTEM�FROM SCIENCE TO CLINIC * 69



effective drugs in a large number of chemotherapeutic regimes. Their major mode of action is

considered to be due to direct DNA-damage. Cisplatin is known as a potent electrophile that readily

reacts with thiols, selenols, and other nucleophiles available. It is therefore not surprising that cis-

platin and trans-platin are effective inhibitor of mammalian TrxR under reducing conditions.311,312

Interestingly, carboplatin did not show significant inhibition.312 The major cellular metabolite of

cisplatin, its glutathione adduct, was also capable of inhibiting the thioredoxin system. Cisplatin- (and

CDNB-)modified hTrxR-1 as well as a selenium-deficient hTrxR-1 have been shown to efficiently

induce apoptosis.313

A series of new platinum(II) complexes has been synthesized recently. The general structure

of these (2:2 0:6 0:2 0 0-terpyridine)platinum(II) complexes is known for its DNA-intercalating

properties314 and for the inhibition of Trypanosoma cruzi trypanothione reductase yet the closely

related enzyme glutathione reductase was far less susceptible to inhibition.315 These compounds are

also highly effective inhibitors of human TrxRs and act at almost stoichiometric concentrations. This

in vitro activity correlated well with their cytostatic effectiveness against different human glio-

blastoma and head-and-neck-squamous carcinoma cell lines. In extracts of these cells, the inhibition

of TrxR was confirmed.316

Since these compounds attack two different targets within the metabolic pathway of DNA

synthesis, they are highly interesting as this approach may reduce resistence formation and the need

for high concentrations at once. Animal studies are underway and the data obtained so far are

promising (Herold-Mende et al., personal communication).

4. Dinitrohalobenzenes

1-Chloro-2,4-dinitrobenzene (2,4-CDNB) was identified as a covalent inhibitor of mammalian

thioredoxin reducase by Arnér et al. in 1995.317 In fact, 2,4-CDNB does not only inhibit Trx-reduction

but also induces a strong increase in the enzyme’s NADPH-oxidase activity which leads to the

formation of superoxide.318 Thus, 2,4-CDNB converts the anti-oxidative enzyme TrxR into a pro-

oxidative enzyme and therefore fulfills the criteria of a turncoat inhibitor.319 The modification by the

2,4-dinitrophenyol group is easily detected in the absorption spectra of the enzyme293 and Nordberg

Figure 14. Structuresofseveralplatinum(II) complexes.a:Cisplatin (CDDP); (b) carboplatin; (c) basicstructureof (2:2 0:6 0:2 0 0-terpyr-
idine)platinum(II) complexes; (d)N,S-bis(2,2 0:6 0,2 0 0-terpyridine)platinum(II) thioacetiminetrinitrate.Particularly theterpyridine^pla-

tinum(II)-complexes are excellent inhibitors of TrxR
316
, acting in stoichiometric concentrations. Cisplatin (a) and its in vivo

metabolite�the glutathioneadduct bis-(glutathionato)-platinum(II)�are inhibitors of the thioredoxinsystemaswell.
312

Interestingly,

carboplatin (b)�eventhoughclosely related to cisplatin�is reportednot tobean inhibitor under similarconditions.
312
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et al. identified the C-terminal selenocysteine and its adjacent cysteine as the modified residues.320

Interestingly, the isomers of 2,4-CDNB, namely 3,4-CDNB and 2,5-CDNB as well as the related

compounds 1,4-dichlorobenzene or 4-chloronitrobenzene do not react with mammalian TrxR. The

fluorine analog of 2,4-CDNB, 1-fluoro-2,4-dinitrobenzene, known as Sanger’s reagent, inhibits the

enzyme and also induces oxidase activity. The closely related enzyme glutathione reductase is

attacked by 2,4-CDNB,321 yet at a 100-fold slower rate than TrxR. This suggests that under in vivo

conditions primarily TrxR (and not glutathione reductase) is inhibited. As 2,4-CDNB is used

clinically, e.g., as a locally applied immunostimulating agent in the treatment of malignant melanoma

(e.g., Ref. 322), its mode of action as well as its side effects must be discussed with respect to its

inhibition of hTrxR.

5. Thiol Alkylating Agents

A number of research compounds including iodoacetic acid, iodoacetamide, 5-iodoacetamidofluor-

escein, and 4-vinylpyridine are widely used for the alkylation of thiols and presumably also selenols.

All these compounds have been shown to inhibit mammalian TrxR (see Refs. 104, 320 and

authors’ observation). It is interesting to note that the closely related enzyme glutathione reductase is

inhibited by iodoacetamide but not by iodoacetic acid (L. Krauth-Siegel, personal communication

and Ref. 323). Drosophila TrxR is C-terminally but not N-terminally modified by iodoacetamide.353

6. Organochalcogenides

Organotellurium and organoselenium compounds have been synthesized and screened for their

inhibitory effects on mammalian TrxR.294,324,325 Many of these compounds are efficient antioxidants.

However, almost all the organotellurium compounds did very strongly and as judged from low

glutathione reductase inhibition rates, very selectively inhibit human TrxR in vitro. Yet, data of cell

culture experiments does not fully correlate with the non-competitive in vitro inhibition rates of TrxR,

suggesting different modes of action within the cell or differences in bioavailability. The latter view is

supported by significant differences in IC50-values between the tested cell lines.324,325

As the most potent antioxidants in the diaryltellurium series turned out to be the most effective

hTrxR inhibitors as well (Fig. 15), it was suggested that they act via the selenolate of TrxR after

oxidation to the tetravalent state (R2–Teþ II ! R2–Teþ IVO) and subsequently lead to a subunit

cross-linking.324

Even though not yet as effective as platinum(II)- or gold(I)- based drugs, tellurium compounds do

certainly provide interesting lead structures for the development of new TrxR-inhibitors. However, in

the presently tested compounds bioavailability and in vivo inhibitory effects are not yet ideally

combined.

7. 10-Aryl-Isoalloxazines

Several FAD analogues impair the activity of human glutathione reductase. It was thus reasonable to

test flavin analogues as inhibitors of glutathione reductase.326 One series of these inhibitors, 10-

arylisoalloxazines, turned out to be very effective. Unexpectedly, however, these compounds do not

act as FAD analogues but in fact bind at the twofold axis between the subunits.327

As glutathione reductase and human thioredoxin reductase are structurally very similar,328 it was

considered possible that these compounds may also inactivate TrxR. In our experiments, however,

none of the 28 compounds tested showed a significant inhibition at concentrations known to be

effective for glutathione reductase.210
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8. Naphthazarin Derivatives

Naphthazarin (Fig. 16) is known to display antiplasmodial and anticancer activity. It also inhibits

human glutathione and thioredoxin reductase. Alkylation at carbon 2 and 3 abolished formation of

glutathione conjugates and already increased the specificity for TrxR.329 Bromination of the aromatic

ring optimized the IC50-values even further. Whereas unmodified naphthazarin is a competitive

inhibitor, most of its new derivatives show—at almost stoichiometric concentrations—mixed types of

inhibition.330

9. Arsenicals

Many arsenical compounds are known for their thiophilicity. Lin et al. could show that trivalent

arsencials (far more than pentavalent compounds) are potent inhibitors of murine thioredoxin

reductase.331 The most effective compound tested was CH3As(III)I2. A competitive (Ki ¼ 100 nM)

and a non-competitive component of inactivation was noted. The inhibition required NADPH, was

time-dependent and—unlike the inhibition by gold(I)-compounds for example—not reversible with

Figure 15. Some of themost efficient telluriumbasedmammalianTrxR inhibitors.Despite strong inhibitory effects onTrxR-activity in

in vitro assays, colony formation is not inhibitedalike forall cell lines tested (MCF-7cells: humanbreast cancer cells; Colo320 cells

andHT 29 cells: humancoloncancercells).Data taken fromRef. 324.

Figure 16. Naphthazarin (a) and its derivatives (b) JD155 and (c) JD141. Analysis of the inhibitionof hTrxR-1by these compounds

(using DTNB as the substrate) resulted in IC50 values of 650 nM (a), 200 nM (b), and 5 nM (c), respectively. Similar results were

obtained when using hTrx-1-Cys73!Ser as the substrate.The results obtained with compounds of this series provided evidence

that thebrominationof thearomatic ring is responsible for thismore than100-fold increase inpotency.
330
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chelating agents such as 2,3-dithiol succinic acid. The compounds were also effective in cell culture.

However, a major drawback for these compounds as TrxR inhibitors is their lack of specificity: many

other flavoenzymes such as glutathione reductase and small TrxRs are inhibited as well. Thus these

reported effects may help us to understand the toxicity of arsenicals but appear not to be suitable as

routine inhibitors of TrxR. It must furthermore be taken into account that the preparation of these

compounds requires handling of highly toxic and carcinogenic substances.

10. Heavy Metal Ions

Thiols and selenols easily form complexes with heavy metal ions such as Hg2þ , Cu2þ , Zn2þ , Co2þ ,

and Mn2þ . The inhibitory effect of a given heavy metal ion correlates well with the solubility product

of its inorganic sulfide.210 However, this binding is non-specific, and thus heavy metal ions are

suitable TrxR-inhibitors only in very specific experimental conditions.

11. Dicarboxylic Acids and Dithranol

Dithranol (¼ anthralin; Fig. 17A) and saturated dicarboxylic acids (Fig. 17B) with 6–12 chain carbon

atoms have been reported by Schallreuter et al. to inhibit human TrxR in melanomas and

psoriasis.222,240 However, most data were obtained using the E. coli enzyme, a small TrxR. The

experiments presented for the mammalian enzyme were mainly done on biopsies using an

unconventional assay whose validity and specificity are questionable.193,194 The published inhibitory

effects of these compounds, especially the dicarboxylic acids, on human TrxR are minimal:

millimolar concentrations were to be applied for almost 1 hr to yield inhibition. One must take

furthermore into account that the commercially available purity of dicarboylic acids is approx. 99%.

Thus, at a 10 mM concentration of the ‘‘inhibitor’’ up to micromolar concentrations of impurities may

be present that do excert the inhibitory effect. Other authors, however, report an inhibition of 64% for

rat liver TrxR using 100 mM azelaic acid332—i.e., higher than in Schallreuters original report.

Furthermore, the authors state that this result was obtained after a preincubation in the absence of

NADPH.

In our (and other) hands using highly purified hTrxR-1, no significant inhibitory effect was

observed with these compounds, neither if added directly to the assay nor after preincubation (either

in the presence or absence of NADPH).210

In their understandable attempt to find an inhibitor of human TrxR, Schallreuter and colleagues

may have missed the importance of the inhibition of E. coliTrxR by azelaic acid, which they report to

be much faster and can be observed at 10–100 times lower concentrations. If these experiments can be

confirmed for other small TrxRs, these compounds may serve as lead structures for novel bacterio-

and fungistatic agents based on TrxR-inhibition. Indeed earlier experiments using azelaic acid on

bacterial cultures revealed an inhibition of DNA-synthesis.239

12. 13-Cis-Retinoic Acid

This compound (Fig. 17C) has been used for the treatment of acne and other skin diseases for many

years. 13-Cis-retinoic acid, but not its isomer all-trans-retinoic acid, was first reported by Schallreuter

Figure 17. A:Dithranol.B: Azelaicacid, adicarboxylicacid.C:13-Cis-retinoicacid (¼ isotretinoin).
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and Wood to covalently inhibit thioredoxin reductase.333,334 13-Cis-retinoic acid (1 mM) resulted in

30% decrease in activity. Similar results have later been published by Rigobello et al. who determined

15% inhibition at 100 mM and 35% at 500 mM.181 U-Taniguchi et al. even report 86% inhibition at

1mM after 30 min of preincubation in the absence of NADPH.332 This finding is incompatible with the

proposed mechanism which requires active site thiols.

Used in cell cultures, 86 mM 13-cis-retinoic acid was capable to reduce the reactivation of H2O2-

damaged proteins—attributed to the action of the thioredoxin system—by 50%.102

The compound is, however, somewhat difficult to handle as it is for instance light sensitive and

exhibits limited solubility.

13. Antitumor Quinoid Compounds

Several quinoids such as the quinones diaziquone, doxorubicin (¼ adriamycin), and menadione

as well as the quinoneimine 2,6-dichloroindophenol (Fig. 18) have been reported to be effective

inhibitors of rat TrxR in vitro, whereas others (e.g., actinomycine D and mitomycin C) had little or no

effect.207,209 The compounds showed a mixed type inhibition in the DTNB-reduction assay.293 Initial

competitive inhibition was observed with Ki-values of 7.5 mM (diaziquone), 10 mM (doxorubicin),

and 4.2 mM (2,6-dichloroindophenol). After 1 hr of incubation in the presence of NADPH, the type of

inhibition changed. Extensive dialysis could not reverse this inhibition indicating a covalent

modification. As radioactive analogues could not be detected as labels of TrxR by SDS–PAGE

analysis, an indirect modification was assumed. As the inhibition was more pronounced in the

presence of oxygen and some ESR-spectra indicated the presence of radicals it may be speculated that

oxidation of active site thiols and/or selenolates with the possibility of a consecutive loss of selenium

(e.g., by b-elimination) contribute to the observed inhibition. Unfortunately, no attempts were made

to reactivate the enzyme with reductants such as DTE. Our own attempts using doxorubicin and

daunorubicin failed to result in a comparably effective inhibition of hTrxR-1210 although we followed

the protocol given in Ref. 209. Protective effects of hTrx-1 overexpression against doxorubicin

cytotoxicity which were abolished by selenite and diamide treatment have been published.278

Taken together, the published quinoids cannot be recommended as TrxR inhibitors, especially

not for in vivo trials where other effects of these compounds predominate.

9 . S U M M A R Y A N D O U T L O O K

The thioredoxin system is involved in a multitude of cellular functions in most species. Understanding

the interactions of this system with other metabolic pathways and their physiological relevance are of

Figure 18. Quinoidcompounds reported tobe effective rTrxRinhibitors.a:Diaziquone; (b) doxorubicin (adriamycin); (c) 2,6-dichlor-
oindophenol.
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importance for a future rational therapeutic approach. Cancer, autoimmune diseases, and infectious

diseases are presumably the most promising fields for Trx and TrxR inhibitors, yet there are other

indications. Several highly selective and effective lead structures have already been discovered. One

of the future aims is therefore to optimize these compounds by further increasing their bioavailability

and selectivity and thus decreasing their unwanted side effects.

The results reported in this review justify the prediction that inhibitors of the thioredoxin system

will become clinical standard drugs in several therapeutic fields in the future.
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98. Reckenfelderbäumer N, Lüdemann H, Schmidt H, Steverding D, Krauth-Siegel RL. Identification and
functional characterization of thioredoxin from Trypanosoma brucei brucei. J Biol Chem 2000;275:7547–
7552.

99. Porras P, Pedrajas JR, Martinez-Galisteo E, Padilla CA, Johansson C, Holmgren A, Barcena JA.
Glutaredoxins catalyze the reduction of glutathione by dihydrolipoamide with high efficiency. Biochem
Biophys Res Commun 2002;295:1046–1051.

78 * GROMER, URIG, AND BECKER



100. Gromer S, Gross JH. Methylseleninate is a substrate rather than an inhibitor of mammalian thioredoxin
reductase. Implications for the antitumor effects of selenium. J Biol Chem 2002;277:9701–9706.

101. Ehrhart J, Gluck M, Mieyal J, Zeevalk GD. Functional glutaredoxin (thioltransferase) activity in rat brain
and liver mitochondria. Parkinsonism Relat Disord 2002;8:395–400.

102. Fernando MR, Nanri H, Yoshitake S, Nagata-Kuno K, Minakami S. Thioredoxin regenerates proteins
inactivated by oxidative stress in endothelial cells. Eur J Biochem 1992;209:917–922.

103. Burk RF, Hill KE, Awad JA, Morrow JD, Lyons PR. Liver and kidney necrosis in selenium-deficient rats
depleted of glutathione. Lab Invest 1995;72:723–730.

104. Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL, Gladyshev VN. Redox regulation of cell
signaling by selenocysteine in mammalian thioredoxin reductases. J Biol Chem 1999;274:24522–24530.

105. Sun QA, Kirnarsky L, Sherman S, Gladyshev VN. Selenoprotein oxidoreductase with specificity for
thioredoxin and glutathione systems. Proc Natl Acad Sci USA 2001;98:3673–3678.

106. Alger HM, Williams DL. The disulfide redox system of Schistosoma mansoni and the importance of a
multifunctional enzyme, thioredoxin glutathione reductase. Mol Biochem Parasitol 2002;121:129–139.

107. May JM, Mendiratta S, Hill KE, Burk RF. Reduction of dehydroascorbate to ascorbate by the selenoenzyme
thioredoxin reductase. J Biol Chem 1997;272:22607–22610.

108. Li X, Cobb CE, Hill KE, Burk RF, May JM. Mitochondrial uptake and recycling of ascorbic acid. Arch
Biochem Biophys 2001;387:143–153.

109. Li X, Qu ZC, May JM. GSH is required to recycle ascorbic acid in cultured liver cell lines. Antioxid Redox
Signal 2001;3:1089–1097.

110. May JM. Ascorbate function and metabolism in the human erythrocyte. Front Biosci 1998;3:D1–D10.
111. Mendiratta S, Qu ZC, May JM. Enzyme-dependent ascorbate recycling in human erythrocytes: Role of

thioredoxin reductase. Free Radic Biol Med 1998;25:221–228.
112. Xia L, Nordman T, Olsson JM, Damdimopoulos A, Bjorkhem-Bergman L, Nalvarte I, Eriksson LC, Arnér

ES, Spyrou G, Björnstedt M. The mammalian cytosolic selenoenzyme thioredoxin reductase reduces
ubiquinone. A novel mechanism for defense against oxidative stress. J Biol Chem 2003;278:2141–2146.

113. Arnér ES, Nordberg J, Holmgren A. Efficient reduction of lipoamide and lipoic acid by mammalian
thioredoxin reductase. Biochem Biophys Res Commun 1996;225:268–274.

114. Cooper CE, Patel RP, Brookes PS, Darley-Usmar VM. Nanotransducers in cellular redox signaling:
Modification of thiols by reactive oxygen and nitrogen species. Trends Biochem Sci 2002;27:489–492.

115. Adler S, Modrich P. T7-induced DNA polymerase. Requirement for thioredoxin sulf-hydryl groups. J Biol
Chem 1983;258:6956–6962.

116. Jeng MF, Campbell AP, Begley T, Holmgren A, Case DA, Wright PE, Dyson HJ. High-resolution solution
structures of oxidized and reduced Escherichia coli thioredoxin. Structure 1994;2:853–868.

117. Gitler C, Zarmi B, Kalef E, Meller R, Zor U, Goldman R. Calcium-dependent oxidation of thioredoxin
during cellular growth initiation. Biochem Biophys Res Commun 2002;290:624–628.

118. Sun QA, Gladyshev VN. Redox regulation of cell signaling by thioredoxin reductases. Methods Enzymol
2002;347:451–461.

119. Zheng M, Aslund F, Storz G. Activation of the OxyR transcription factor by reversible disulfide bond
formation. Science 1998;279:1718–1721.

120. Zhang J, Velsor LW, Patel JM, Postlethwait EM, Block ER. Nitric oxide-induced reduction of lung cell and
whole lung thioredoxin expression is regulated by NF-kB. Am J Physiol 1999;277:L787–L793.

121. Sun Y, Oberley LW. Redox regulation of transcriptional activators. Free Rad Biol Med 1996;21:335–348.
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